如何合理地估算線程池大?。?/h1>

      網(wǎng)友投稿 853 2025-04-02

      來源:蔣小強 ,

      ifeve.com/how-to-calculate-threadpool-size/

      如何合理地估算線程池大???

      這個問題雖然看起來很小,卻并不那么容易回答。大家如果有更好的方法歡迎賜教,先來一個天真的估算方法:假設(shè)要求一個系統(tǒng)的TPS(Transaction Per Second或者Task Per Second)至少為20,然后假設(shè)每個Transaction由一個線程完成,繼續(xù)假設(shè)平均每個線程處理一個Transaction的時間為4s。那么問題轉(zhuǎn)化為:

      如何設(shè)計線程池大小,使得可以在1s內(nèi)處理完20個Transaction?

      計算過程很簡單,每個線程的處理能力為0.25TPS,那么要達到20TPS,顯然需要20/0.25=80個線程。

      很顯然這個估算方法很天真,因為它沒有考慮到CPU數(shù)目。一般服務(wù)器的CPU核數(shù)為16或者32,如果有80個線程,那么肯定會帶來太多不必要的線程上下文切換開銷。

      再來第二種簡單的但不知是否可行的方法(N為CPU總核數(shù)):

      如果是CPU密集型應(yīng)用,則線程池大小設(shè)置為N+1

      如果是IO密集型應(yīng)用,則線程池大小設(shè)置為2N+1

      如果一臺服務(wù)器上只部署這一個應(yīng)用并且只有這一個線程池,那么這種估算或許合理,具體還需自行測試驗證。

      接下來在這個文檔:服務(wù)器性能IO優(yōu)化 中發(fā)現(xiàn)一個估算公式:

      最佳線程數(shù)目 = ((線程等待時間+線程CPU時間)/線程CPU時間 )* CPU數(shù)目

      比如平均每個線程CPU運行時間為0.5s,而線程等待時間(非CPU運行時間,比如IO)為1.5s,CPU核心數(shù)為8,那么根據(jù)上面這個公式估算得到:((0.5+1.5)/0.5)*8=32。這個公式進一步轉(zhuǎn)化為:

      最佳線程數(shù)目 = (線程等待時間與線程CPU時間之比 + 1)* CPU數(shù)目

      可以得出一個結(jié)論:

      線程等待時間所占比例越高,需要越多線程。線程CPU時間所占比例越高,需要越少線程。

      上一種估算方法也和這個結(jié)論相合。

      一個系統(tǒng)最快的部分是CPU,所以決定一個系統(tǒng)吞吐量上限的是CPU。增強CPU處理能力,可以提高系統(tǒng)吞吐量上限。但根據(jù)短板效應(yīng),真實的系統(tǒng)吞吐量并不能單純根據(jù)CPU來計算。那要提高系統(tǒng)吞吐量,就需要從“系統(tǒng)短板”(比如網(wǎng)絡(luò)延遲、IO)著手:

      盡量提高短板操作的并行化比率,比如多線程下載技術(shù)

      增強短板能力,比如用NIO替代IO

      第一條可以聯(lián)系到Amdahl定律,這條定律定義了串行系統(tǒng)并行化后的加速比計算公式:

      加速比=優(yōu)化前系統(tǒng)耗時 / 優(yōu)化后系統(tǒng)耗時

      加速比越大,表明系統(tǒng)并行化的優(yōu)化效果越好。Addahl定律還給出了系統(tǒng)并行度、CPU數(shù)目和加速比的關(guān)系,加速比為Speedup,系統(tǒng)串行化比率(指串行執(zhí)行代碼所占比率)為F,CPU數(shù)目為N:

      Speedup <= 1 / (F + (1-F)/N)

      當N足夠大時,串行化比率F越小,加速比Speedup越大。

      寫到這里,我突然冒出一個問題。

      是否使用線程池就一定比使用單線程高效呢?

      答案是否定的,比如Redis就是單線程的,但它卻非常高效,基本操作都能達到十萬量級/s。從線程這個角度來看,部分原因在于:

      多線程帶來線程上下文切換開銷,單線程就沒有這種開銷

      當然“Redis很快”更本質(zhì)的原因在于:Redis基本都是內(nèi)存操作,這種情況下單線程可以很高效地利用CPU。而多線程適用場景一般是:存在相當比例的IO和網(wǎng)絡(luò)操作。

      所以即使有上面的簡單估算方法,也許看似合理,但實際上也未必合理,都需要結(jié)合系統(tǒng)真實情況(比如是IO密集型或者是CPU密集型或者是純內(nèi)存操作)和硬件環(huán)境(CPU、內(nèi)存、硬盤讀寫速度、網(wǎng)絡(luò)狀況等)來不斷嘗試達到一個符合實際的合理估算值。

      最后來一個“Dark Magic”估算方法(因為我暫時還沒有搞懂它的原理),使用下面的類:

      package pool_size_calculate;

      import java.math.BigDecimal;

      import java.math.RoundingMode;

      import java.util.Timer;

      import java.util.TimerTask;

      import java.util.concurrent.BlockingQueue;

      /**

      * A class that calculates the optimal thread pool boundaries. It takes the

      * desired target utilization and the desired work queue memory consumption as

      * input and retuns thread count and work queue capacity.

      *

      * @author Niklas Schlimm

      *

      */

      public abstract class PoolSizeCalculator {

      /**

      * The sample queue size to calculate the size of a single {@link Runnable}

      * element.

      */

      private final int SAMPLE_QUEUE_SIZE = 1000;

      /**

      * Accuracy of test run. It must finish within 20ms of the testTime

      * otherwise we retry the test. This could be configurable.

      */

      private final int EPSYLON = 20;

      /**

      * Control variable for the CPU time investigation.

      */

      private volatile boolean expired;

      /**

      * Time (millis) of the test run in the CPU time calculation.

      */

      private final long testtime = 3000;

      /**

      * Calculates the boundaries of a thread pool for a given {@link Runnable}.

      *

      * @param targetUtilization

      *? ? ? ? ? ? the desired utilization of the CPUs (0 <= targetUtilization <=? ?*? ? ? ? ? ? 1)? ?* @param targetQueueSizeBytes? ?*? ? ? ? ? ? the desired maximum work queue size of the thread pool (bytes)? ?*/ protected void calculateBoundaries(BigDecimal targetUtilization,? BigDecimal targetQueueSizeBytes) {? calculateOptimalCapacity(targetQueueSizeBytes);? Runnable task = creatTask();? start(task);? start(task); // warm up phase? long cputime = getCurrentThreadCPUTime();? start(task); // test intervall? cputime = getCurrentThreadCPUTime() - cputime;? long waittime = (testtime * 1000000) - cputime; calculateOptimalThreadCount(cputime, waittime, targetUtilization);? }? private void calculateOptimalCapacity(BigDecimal targetQueueSizeBytes) {? long mem = calculateMemoryUsage();? BigDecimal queueCapacity = targetQueueSizeBytes.divide(new BigDecimal(? mem), RoundingMode.HALF_UP);? System.out.println("Target queue memory usage (bytes): "? + targetQueueSizeBytes);? System.out.println("createTask() produced "? + creatTask().getClass().getName() + " which took " + mem? + " bytes in a queue");? System.out.println("Formula: " + targetQueueSizeBytes + " / " + mem); System.out.println("* Recommended queue capacity (bytes): "? + queueCapacity);? }? /**? ?* Brian Goetz' optimal thread count formula, see 'Java Concurrency in? ?* Practice' (chapter 8.2)? ?*?? ?* @param cpu? ?*? ? ? ? ? ? cpu time consumed by considered task? ?* @param wait? ?*? ? ? ? ? ? wait time of considered task? ?* @param targetUtilization? ?*? ? ? ? ? ? target utilization of the system? ?*/? private void calculateOptimalThreadCount(long cpu, long wait, BigDecimal targetUtilization) {? BigDecimal waitTime = new BigDecimal(wait); BigDecimal computeTime = new BigDecimal(cpu);? BigDecimal numberOfCPU = new BigDecimal(Runtime.getRuntime()? .availableProcessors());? BigDecimal optimalthreadcount = numberOfCPU.multiply(targetUtilization)? .multiply( new BigDecimal(1).add(waitTime.divide(computeTime, RoundingMode.HALF_UP)));? System.out.println("Number of CPU: " + numberOfCPU);? System.out.println("Target utilization: " + targetUtilization); System.out.println("Elapsed time (nanos): " + (testtime * 1000000)); System.out.println("Compute time (nanos): " + cpu);? System.out.println("Wait time (nanos): " + wait);? System.out.println("Formula: " + numberOfCPU + " * "? + targetUtilization + " * (1 + " + waitTime + " / "? + computeTime + ")"); System.out.println("* Optimal thread count: " + optimalthreadcount);? }? /**? ?* Runs the {@link Runnable} over a period defined in {@link #testtime}.? ?* Based on Heinz Kabbutz' ideas? ?* (http://www.javaspecialists.eu/archive/Issue124.html).? ?*?? ?* @param task? ?*? ? ? ? ? ? the runnable under investigation? ?*/? public void start(Runnable task) {? long start = 0;? int runs = 0; do {? if (++runs > 5) {

      throw new IllegalStateException("Test not accurate");

      }

      expired = false;

      start = System.currentTimeMillis();

      Timer timer = new Timer();

      timer.schedule(new TimerTask() {

      public void run() {

      expired = true;

      }

      }, testtime);

      while (!expired) {

      task.run();

      }

      start = System.currentTimeMillis() - start;

      timer.cancel();

      } while (Math.abs(start - testtime) > EPSYLON);

      collectGarbage(3);

      }

      private void collectGarbage(int times) {

      for (int i = 0; i < times; i++) {

      System.gc();

      try {

      Thread.sleep(10);

      } catch (InterruptedException e) {

      Thread.currentThread().interrupt();

      break;

      }

      }

      }

      /**

      * Calculates the memory usage of a single element in a work queue. Based on

      * Heinz Kabbutz' ideas

      * (http://www.javaspecialists.eu/archive/Issue029.html).

      *

      * @return memory usage of a single {@link Runnable} element in the thread

      *? ? ? ? ?pools work queue

      */

      public long calculateMemoryUsage() {

      BlockingQueue queue = createWorkQueue();

      for (int i = 0; i < SAMPLE_QUEUE_SIZE; i++) {

      queue.add(creatTask());

      }

      long mem0 = Runtime.getRuntime().totalMemory()

      - Runtime.getRuntime().freeMemory();

      long mem1 = Runtime.getRuntime().totalMemory()

      - Runtime.getRuntime().freeMemory();

      queue = null;

      collectGarbage(15);

      mem0 = Runtime.getRuntime().totalMemory()

      - Runtime.getRuntime().freeMemory();

      queue = createWorkQueue();

      for (int i = 0; i < SAMPLE_QUEUE_SIZE; i++) {

      queue.add(creatTask());

      }

      collectGarbage(15);

      mem1 = Runtime.getRuntime().totalMemory()

      - Runtime.getRuntime().freeMemory();

      return (mem1 - mem0) / SAMPLE_QUEUE_SIZE;

      }

      /**

      * Create your runnable task here.

      *

      * @return an instance of your runnable task under investigation

      */

      protected abstract Runnable creatTask();

      /**

      * Return an instance of the queue used in the thread pool.

      *

      * @return queue instance

      */

      protected abstract BlockingQueue createWorkQueue();

      /**

      * Calculate current cpu time. Various frameworks may be used here,

      * depending on the operating system in use. (e.g.

      * http://www.hyperic.com/products/sigar). The more accurate the CPU time

      * measurement, the more accurate the results for thread count boundaries.

      *

      * @return current cpu time of current thread

      */

      protected abstract long getCurrentThreadCPUTime();

      }

      然后自己繼承這個抽象類并實現(xiàn)它的三個抽象方法,比如下面是我寫的一個示例(任務(wù)是請求網(wǎng)絡(luò)數(shù)據(jù)),其中我指定期望CPU利用率為1.0(即100%),任務(wù)隊列總大小不超過100,000字節(jié):

      package pool_size_calculate;

      import java.io.BufferedReader;

      import java.io.IOException;

      import java.io.InputStreamReader;

      import java.lang.management.ManagementFactory;

      import java.math.BigDecimal;

      import java.net.HttpURLConnection;

      import java.net.URL;

      import java.util.concurrent.BlockingQueue;

      import java.util.concurrent.LinkedBlockingQueue;

      public class SimplePoolSizeCaculatorImpl extends PoolSizeCalculator {

      @Override

      protected Runnable creatTask() {

      return new AsyncIOTask();

      }

      @Override

      protected BlockingQueue createWorkQueue() {

      return new LinkedBlockingQueue(1000);

      }

      @Override

      protected long getCurrentThreadCPUTime() {

      return ManagementFactory.getThreadMXBean().getCurrentThreadCpuTime();

      }

      public static void main(String[] args) {

      PoolSizeCalculator poolSizeCalculator = new SimplePoolSizeCaculatorImpl();

      poolSizeCalculator.calculateBoundaries(new BigDecimal(1.0), new BigDecimal(100000));

      }

      }

      /**

      * 自定義的異步IO任務(wù)

      * @author Will

      *

      */

      class AsyncIOTask implements Runnable {

      @Override

      public void run() {

      HttpURLConnection connection = null;

      BufferedReader reader = null;

      try {

      String getURL = "http://baidu.com";

      URL getUrl = new URL(getURL);

      connection = (HttpURLConnection) getUrl.openConnection();

      connection.connect();

      reader = new BufferedReader(new InputStreamReader(

      connection.getInputStream()));

      String line;

      while ((line = reader.readLine()) != null) {

      // empty loop

      }

      }

      如何合理地估算線程池大???

      catch (IOException e) {

      } finally {

      if(reader != null) {

      try {

      reader.close();

      }

      catch(Exception e) {

      }

      }

      connection.disconnect();

      }

      }

      }

      得到的輸出如下:

      Target queue memory usage (bytes): 100000

      createTask() produced pool_size_calculate.AsyncIOTask which took 40 bytes in a queue

      Formula: 100000 / 40

      * Recommended queue capacity (bytes): 2500

      Number of CPU: 4

      Target utilization: 1

      Elapsed time (nanos): 3000000000

      Compute time (nanos): 47181000

      Wait time (nanos): 2952819000

      Formula: 4 * 1 * (1 + 2952819000 / 47181000)

      * Optimal thread count: 256

      推薦的任務(wù)隊列大小為2500,線程數(shù)為256,有點出乎意料之外。我可以如下構(gòu)造一個線程池:

      ThreadPoolExecutor pool =

      new ThreadPoolExecutor(256, 256, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue(2500));

      -更多文章-

      大數(shù)據(jù)就業(yè)前景,分析的太到位了!

      當CPU飆高時,它在做什么

      阿里分布式事務(wù)框架GTS開源了!

      SpringCloud隨筆:記錄在使用OAuth2遇到的巨坑

      -關(guān)注我-

      https://mp.weixin.qq.com/s?__biz=MzAxNjk4ODE4OQ==&mid=2247484967&idx=1&sn=4417f52860f457b9c0a971ab4f38d477&chksm=9bed2755ac9aae4336876361f99066f3a7b363bdb377df372f14c35e744707e56f83132c846b&scene=21#wechat_redirect

      任務(wù)調(diào)度 網(wǎng)絡(luò)

      版權(quán)聲明:本文內(nèi)容由網(wǎng)絡(luò)用戶投稿,版權(quán)歸原作者所有,本站不擁有其著作權(quán),亦不承擔相應(yīng)法律責任。如果您發(fā)現(xiàn)本站中有涉嫌抄襲或描述失實的內(nèi)容,請聯(lián)系我們jiasou666@gmail.com 處理,核實后本網(wǎng)站將在24小時內(nèi)刪除侵權(quán)內(nèi)容。

      版權(quán)聲明:本文內(nèi)容由網(wǎng)絡(luò)用戶投稿,版權(quán)歸原作者所有,本站不擁有其著作權(quán),亦不承擔相應(yīng)法律責任。如果您發(fā)現(xiàn)本站中有涉嫌抄襲或描述失實的內(nèi)容,請聯(lián)系我們jiasou666@gmail.com 處理,核實后本網(wǎng)站將在24小時內(nèi)刪除侵權(quán)內(nèi)容。

      上一篇:思維導(dǎo)圖和流程圖軟件不能打開是什么問題(思維導(dǎo)圖不會)
      下一篇:【云端大事件】文件太多太雜,沒地方存儲,怎么辦?

      相關(guān)文章
      亚洲成a人无码av波多野按摩| 久久丫精品国产亚洲av不卡| 亚洲综合另类小说色区色噜噜| 亚洲欧洲免费视频| 亚洲AV无码乱码在线观看牲色| 亚洲综合精品成人| 亚洲高清不卡视频| 亚洲国产美女精品久久久久∴| 国产成人精品日本亚洲语音| 亚洲色图校园春色| 国产精品亚洲成在人线| 亚洲精品宾馆在线精品酒店| 亚洲国产综合在线| 亚洲国产精品自在在线观看| 亚洲av无码不卡| 国产AV无码专区亚洲AV手机麻豆| 无码一区二区三区亚洲人妻| 国产精品亚洲午夜一区二区三区| 亚洲免费视频网站| 亚洲成a人片77777老司机| 亚洲中文字幕无码久久2017| 国产AV日韩A∨亚洲AV电影| 青青青国产色视频在线观看国产亚洲欧洲国产综合 | 亚洲Av无码乱码在线播放| 一级毛片直播亚洲| 亚洲偷自拍拍综合网| 91麻豆国产自产在线观看亚洲| 亚洲色欲久久久综合网| 亚洲爆乳无码专区| 亚洲乱亚洲乱淫久久| 亚洲国产日韩在线人成下载| 亚洲最大福利视频| 亚洲人成网站在线观看播放动漫| 亚洲春色另类小说| 亚洲视频在线免费播放| 亚洲专区中文字幕| 亚洲一卡2卡4卡5卡6卡残暴在线| 456亚洲人成影院在线观| 国产AV无码专区亚洲AV麻豆丫 | 亚洲AV中文无码乱人伦在线视色| 亚洲日韩在线观看免费视频|