亞寵展、全球寵物產業風向標——亞洲寵物展覽會深度解析
1289
2022-06-19
數據也叫做觀測,是實驗、測量、觀察、調查等的結果。在資料分析中,處理的數據有定性和定量兩種。只對一類數據進行分類,而不能用數字度量的數據叫做定性數據。下面就讓來給大家分享一下常見的數據分析法有哪些,讓我們一起來看看吧。
1、聚類分析(Cluster Analysis)
聚類分析指將物理或抽象對象的集合分組成為由類似的對象組成的多個類的分析過程。聚類是將數據分類到不同的類或者簇這樣的一個過程,所以同一個簇中的對象有很大的相似性,而不同簇間的對象有很大的相異性。聚類分析是一種探索性的分析,在分類的過程中,人們不必事先給出一個分類的標準,聚類分析能夠從樣本數據出發,自動進行分類。聚類分析所使用方法的不同,常常會得到不同的結論。不同研究者對于同一組數據進行聚類分析,所得到的聚類數未必一致。
2、因子分析(Factor Analysis)
因子分析是指研究從變量群中提取共性因子的統計技術。因子分析就是從大量的數據中尋找內在的聯系,減少決策的困難。因子分析的方法約有10多種,如重心法、影像分析法,最大似然解、最小平方法、阿爾發抽因法、拉奧典型抽因法等等。在社會學研究中,因子分析常采用以主成分分析為基礎的反覆法。
3、相關分析(Correlation Analysis)
相關分析(correlation analysis),相關分析是研究現象之間是否存在某種依存關系,并對具體有依存關系的現象探討其相關方向以及相關程度。相關關系是一種非確定性的關系,例如,以X和Y分別記一個人的身高和體重,或分別記每公頃施肥量與每公頃小麥產量,則X與Y顯然有關系,而又沒有確切到可由其中的一個去精確地決定另一個的程度,這就是相關關系。
4、對應分析(Correspondence Analysis)
對應分析(Correspondence analysis)也稱關聯分析、R-Q型因子分析,通過分析由定性變量構成的交互匯總表來揭示變量間的聯系。可以揭示同一變量的各個類別之間的差異,以及不同變量各個類別之間的對應關系。對應分析的基本思想是將一個聯列表的行和列中各元素的比例結構以點的形式在較低維的空間中表示出來。
5、回歸分析
研究一個隨機變量Y對另一個(X)或一組(X1,X2,?,Xk)變量的相依關系的統計分析方法。回歸分析(regression analysis)是確定兩種或兩種以上變數間相互依賴的定量關系的一種統計分析方法。運用十分廣泛,回歸分析按照涉及的自變量的多少,可分為一元回歸分析和多元回歸分析;按照自變量和因變量之間的關系類型,可分為線性回歸分析和非線性回歸分析。
6、方差分析(ANOVA/Analysis of Variance)
又稱“變異數分析”或“F檢驗”,是R.A.Fisher發明的,用于兩個及兩個以上樣本均數差別的顯著性檢驗。由于各種因素的影響,研究所得的數據呈現波動狀。造成波動的原因可分成兩類,一是不可控的隨機因素,另一是研究中施加的對結果形成影響的可控因素。方差分析是從觀測變量的方差入手,研究諸多控制變量中哪些變量是對觀測變量有顯著影響的變量。
實驗數據的處理自然離不開繪制成表。那么,常見的實驗數據處理表格體現方式分為兩種:列表法和作圖法。
在數據中表現為類別,而非分次序,就是定性數據,如性別、品牌等;在定性數據上表示分類,但有次序,是按學歷、商品質量等級等定性數據。以上就是為大家分享的關于“常見的數據分析法有哪些”的全部內容啦,希望能夠給大家帶來幫助哦。
版權聲明:本文內容由網絡用戶投稿,版權歸原作者所有,本站不擁有其著作權,亦不承擔相應法律責任。如果您發現本站中有涉嫌抄襲或描述失實的內容,請聯系我們jiasou666@gmail.com 處理,核實后本網站將在24小時內刪除侵權內容。