用華為云鏡像源碼編譯Spark3.0.1
1. 環境準備
git version 1.8.3.1
java version "1.8.0_221"
scala version 2.12.8
apache-maven-3.6.1
[root@hadoop001 spark]# yum install -y git
git clone https://github.com/apache/spark.git
這里可能會出現下面的問題
問題1:
Cloning into 'spark'...
fatal: unable to access 'https://github.com/apache/spark.git/': Could not resolve host: github.com; Unknown error
這種情況的解決辦法如下:
[root@hadoop001 ~]# ping github.com
PING github.com (192.30.255.113) 56(84) bytes of data.
# 把 github.com 地址加入到 /etc/hosts 里面
[root@hadoop001 sourcecode]$ vim /etc/hosts
127.0.0.1 localhost localhost.localdomain localhost4 localhost4.localdomain4
::1 localhost localhost.localdomain localhost6 localhost6.localdomain6
192.168.100.100 hadoop001
192.30.255.113 github.com
問題2:
[root@hadoop001 ~]# git clone https://github.com/apache/spark.git
Cloning into 'spark'...
fatal: unable to access 'https://github.com/apache/spark.git/': Failed connect to github.com:443; Connection refused
解決辦法:先把子切換到全局,然后再取消,接著取消全局代理
[root@hadoop001 ~]# git config --global http.proxy http://127.0.0.1:1080
[root@hadoop001 ~]# git config --global https.proxy http://127.0.0.1:1080
[root@hadoop001 ~]# git config --global --unset http.proxy
[root@hadoop001 ~]# git config --global --unset https.proxy
查看 spark 源碼包
[root@hadoop001 ~]# cd spark/
[root@hadoop001 spark]# ll
total 380
-rw-r--r-- 1 root root 2643 Nov 28 11:24 appveyor.yml
drwxr-xr-x 3 root root 4096 Nov 28 11:24 assembly
drwxr-xr-x 2 root root 4096 Nov 28 11:24 bin
drwxr-xr-x 2 root root 4096 Nov 28 11:24 binder
drwxr-xr-x 2 root root 4096 Nov 28 11:24 build
drwxr-xr-x 9 root root 4096 Nov 28 11:24 common
drwxr-xr-x 2 root root 4096 Nov 28 11:24 conf
-rw-r--r-- 1 root root 997 Nov 28 11:24 CONTRIBUTING.md
drwxr-xr-x 4 root root 4096 Nov 28 11:24 core
drwxr-xr-x 5 root root 4096 Nov 28 11:24 data
drwxr-xr-x 6 root root 4096 Nov 28 11:24 dev
drwxr-xr-x 9 root root 12288 Nov 28 11:24 docs
drwxr-xr-x 3 root root 4096 Nov 28 11:24 examples
drwxr-xr-x 12 root root 4096 Nov 28 11:24 external
drwxr-xr-x 3 root root 4096 Nov 28 11:24 graphx
drwxr-xr-x 3 root root 4096 Nov 28 11:24 hadoop-cloud
drwxr-xr-x 3 root root 4096 Nov 28 11:24 launcher
-rw-r--r-- 1 root root 13453 Nov 28 11:24 LICENSE
-rw-r--r-- 1 root root 23221 Nov 28 11:24 LICENSE-binary
drwxr-xr-x 2 root root 4096 Nov 28 11:24 licenses
drwxr-xr-x 2 root root 4096 Nov 28 11:24 licenses-binary
drwxr-xr-x 4 root root 4096 Nov 28 11:24 mllib
drwxr-xr-x 3 root root 4096 Nov 28 11:24 mllib-local
-rw-r--r-- 1 root root 2002 Nov 28 11:24 NOTICE
-rw-r--r-- 1 root root 57677 Nov 28 11:24 NOTICE-binary
-rw-r--r-- 1 root root 122016 Nov 28 11:24 pom.xml
drwxr-xr-x 2 root root 4096 Nov 28 11:24 project
drwxr-xr-x 7 root root 4096 Nov 28 11:24 python
drwxr-xr-x 3 root root 4096 Nov 28 11:24 R
-rw-r--r-- 1 root root 4488 Nov 28 11:24 README.md
drwxr-xr-x 3 root root 4096 Nov 28 11:24 repl
drwxr-xr-x 5 root root 4096 Nov 28 11:24 resource-managers
drwxr-xr-x 2 root root 4096 Nov 28 11:24 sbin
-rw-r--r-- 1 root root 20431 Nov 28 11:24 scalastyle-config.xml
drwxr-xr-x 6 root root 4096 Nov 28 11:24 sql
drwxr-xr-x 3 root root 4096 Nov 28 11:24 streaming
drwxr-xr-x 3 root root 4096 Nov 28 11:24 tools
查看 spark 分支情況
[root@hadoop001 spark]# git branch -a
* master
remotes/origin/HEAD -> origin/master
remotes/origin/branch-0.5
remotes/origin/branch-0.6
remotes/origin/branch-0.7
remotes/origin/branch-0.8
remotes/origin/branch-0.9
remotes/origin/branch-1.0
remotes/origin/branch-1.0-jdbc
remotes/origin/branch-1.1
remotes/origin/branch-1.2
remotes/origin/branch-1.3
remotes/origin/branch-1.4
remotes/origin/branch-1.5
remotes/origin/branch-1.6
remotes/origin/branch-2.0
remotes/origin/branch-2.1
remotes/origin/branch-2.2
remotes/origin/branch-2.3
remotes/origin/branch-2.4
remotes/origin/branch-3.0
remotes/origin/master
切換到 spark 3.0.1
[root@hadoop001 spark]# git checkout v3.0.1
Note: checking out 'v3.0.1'.
You are in 'detached HEAD' state. You can look around, make experimental
changes and commit them, and you can discard any commits you make in this
state without impacting any branches by performing another checkout.
If you want to create a new branch to retain commits you create, you may
do so (now or later) by using -b with the checkout command again. Example:
git checkout -b new_branch_name
HEAD is now at 2b147c4... Preparing Spark release v3.0.1-rc3
2. 修改 spark 源碼
簡單的修改一下 spark 源碼,再編譯,我們想要的結果是執行 spark-shell 后會在命令行里面多出現 “Hitman who wakes up at five in the morning”
[root@hadoop001 deploy]# vim /root/spark/core/src/main/scala/org/apache/spark/deploy/SparkSubmit.scala
3. spark 源碼編譯
需要在 Maven 的 settings.xml 中添加如下內容,我是用的華為云鏡像,也可以用阿里云鏡像,如果有梯子可以不用國內的鏡像
[root@hadoop001 ~]# vim /usr/manven/apache-maven-3.6.1/conf/settings.xml
-->
......
由于我的 hadoop 版本是基于 CDH 源碼編譯的,因此需要在 spark 源碼目錄下的 pom 文件添加 CDH maven 倉庫
[root@hadoop001 spark]# vim /root/spark/pom.xml
注意:在編譯前需要檢查所需要的軟件是否安裝成功
[root@hadoop001 spark]# echo $HADOOP_HOME
/home/hadoop/app/hadoop-2.6.0-cdh5.7.0
[root@hadoop001 spark]#
[root@hadoop001 spark]# echo $JAVA_HOME
/usr/java/jdk1.8.0_221
[root@hadoop001 spark]# echo $SCALA_HOME
/usr/scala/scala-2.12.8
[root@hadoop001 spark]# echo $MAVEN_HOME
/usr/maven/apache-maven-3.6.1
[root@hadoop001 spark]#/root/spark/dev/make-distribution.sh --name 2.6.0-cdh5.7.0 --tgz -Phadoop-2.6 -Phive -Phive-thriftserv
er -Pyarn -Pkubernetes -Dhadoop.version=2.6.0-cdh5.7.0
[INFO] ------------------------------------------------------------------------
[INFO] Reactor Summary for Spark Project Parent POM 3.0.1:
[INFO]
[INFO] Spark Project Parent POM ........................... SUCCESS [ 2.695 s]
[INFO] Spark Project Tags ................................. SUCCESS [ 5.812 s]
[INFO] Spark Project Sketch ............................... SUCCESS [ 7.493 s]
[INFO] Spark Project Local DB ............................. SUCCESS [ 2.248 s]
[INFO] Spark Project Networking ........................... SUCCESS [ 4.814 s]
[INFO] Spark Project Shuffle Streaming Service ............ SUCCESS [ 1.749 s]
[INFO] Spark Project Unsafe ............................... SUCCESS [ 11.155 s]
[INFO] Spark Project Launcher ............................. SUCCESS [01:24 min]
[INFO] Spark Project Core ................................. SUCCESS [08:23 min]
[INFO] Spark Project ML Local Library ..................... SUCCESS [01:20 min]
[INFO] Spark Project GraphX ............................... SUCCESS [01:00 min]
[INFO] Spark Project Streaming ............................ SUCCESS [01:42 min]
[INFO] Spark Project Catalyst ............................. SUCCESS [05:16 min]
[INFO] Spark Project SQL .................................. SUCCESS [06:20 min]
[INFO] Spark Project ML Library ........................... SUCCESS [04:25 min]
[INFO] Spark Project Tools ................................ SUCCESS [ 31.632 s]
[INFO] Spark Project Hive ................................. SUCCESS [04:32 min]
[INFO] Spark Project REPL ................................. SUCCESS [ 29.968 s]
[INFO] Spark Project Assembly ............................. SUCCESS [ 5.102 s]
[INFO] Kafka 0.10+ Token Provider for Streaming ........... SUCCESS [ 36.694 s]
[INFO] Spark Integration for Kafka 0.10 ................... SUCCESS [01:48 min]
[INFO] Kafka 0.10+ Source for Structured Streaming ........ SUCCESS [01:26 min]
[INFO] Spark Project Examples ............................. SUCCESS [ 59.937 s]
[INFO] Spark Integration for Kafka 0.10 Assembly .......... SUCCESS [ 4.603 s]
[INFO] Spark Avro ......................................... SUCCESS [01:01 min]
[INFO] ------------------------------------------------------------------------
[INFO] BUILD SUCCESS
[INFO] ------------------------------------------------------------------------
[INFO] Total time: 42:07 min
[INFO] Finished at: 2020-11-28T14:31:20+08:00
[INFO] ------------------------------------------------------------------------
4. 結果驗證
[root@hadoop001 spark]# tar -zxvf /root/spark/spark-3.0.1-bin-2.6.0-cdh5.7.0.tgz /home/hadoop/app/
[root@hadoop001 bin]# ./spark-shell
20/11/28 15:45:01 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
Spark context Web UI available at http://hadoop001:4040
Spark context available as 'sc' (master = local[*], app id = local-1606549507863).
Spark session available as 'spark'.
Welcome to
____ __
/ __/__ ___ _____/ /__
_\ \/ _ \/ _ `/ __/ '_/
/___/ .__/\_,_/_/ /_/\_\ version 3.0.1
/_/
Using Scala version 2.12.10 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_221)
Type in expressions to have them evaluated.
Type :help for more information.
scala>
很遺憾,發現不是我們想要的結果,檢查編譯后的版本,發現版本是 spark3.0.1 和想要的版本沒有錯誤,那到底是哪里錯誤呢?
[root@hadoop001 deploy]# git branch -vv
* (detached from v3.0.1) 2b147c4 Preparing Spark release v3.0.1-rc3
master 13fd272 [origin/master] Spelling r common dev mlib external project streaming resource managers python
在命令行中執行 spark-submit –version 和 spark-shell –version 查看結果
發現加上 spark-shell –version 有自己想要的結果,但是直接 spark-shell 沒有想要的結果,那么唯一的解釋應該是修改源碼的地方有誤,修改源碼的位置出錯了,經過一番的查找,確實是修改源碼的位置有錯誤,如果想要我們預先假設的結果,需要修改 spark repl 模塊的源碼,修改地方如下所示:
[root@hadoop001 repl]# vim /root/spark/repl/src/main/scala/org/apache/spark/repl/SparkILoop.scala
......
由于前面已經編譯完了整個spark,而且只對 repl 模塊做了修改,因此我們只對 repl 這個子模塊編譯即可。那么如何編譯 repl 子模塊呢?請看 spark 官網做了詳細的介紹,首先進入源碼 repl 模塊的 pom.xml 文件中,發現定義了
[root@hadoop001 repl]# vim /root/spark/repl/pom.xml
......
Apache Spark 文檔中關于 Spark 子模塊的編譯說明截圖如下:
因此對 spark repl 子模塊的編譯操作步驟如下:
[root@hadoop001 spark]# ./build/mvn -pl :spark-repl_2.12 clean install
......
[INFO] --- maven-install-plugin:3.0.0-M1:install (default-install) @ spark-repl_2.12 ---
[INFO] Installing /root/spark/repl/target/spark-repl_2.12-3.0.1.jar to /root/.m2/repository/org/apache/spark/spark-repl_2.12/3.0.1/spark-repl_2.12-3.0.1.jar
[INFO] Installing /root/spark/repl/dependency-reduced-pom.xml to /root/.m2/repository/org/apache/spark/spark-repl_2.12/3.0.1/spark-repl_2.12-3.0.1.pom
[INFO] Installing /root/spark/repl/target/spark-repl_2.12-3.0.1-tests.jar to /root/.m2/repository/org/apache/spark/spark-repl_2.12/3.0.1/spark-repl_2.12-3.0.1-tests.jar
[INFO] Installing /root/spark/repl/target/spark-repl_2.12-3.0.1-sources.jar to /root/.m2/repository/org/apache/spark/spark-repl_2.12/3.0.1/spark-repl_2.12-3.0.1-sources.jar
[INFO] Installing /root/spark/repl/target/spark-repl_2.12-3.0.1-test-sources.jar to /root/.m2/repository/org/apache/spark/spark-repl_2.12/3.0.1/spark-repl_2.12-3.0.1-test-sources.jar
[INFO] Installing /root/spark/repl/target/spark-repl_2.12-3.0.1-javadoc.jar to /root/.m2/repository/org/apache/spark/spark-repl_2.12/3.0.1/spark-repl_2.12-3.0.1-javadoc.jar
[INFO] ------------------------------------------------------------------------
[INFO] BUILD SUCCESS
[INFO] ------------------------------------------------------------------------
[INFO] Total time: 04:31 min
[INFO] Finished at: 2020-11-28T16:47:29+08:00
[INFO] ------------------------------------------------------------------------
替換掉原來的 spark-repl jar
[root@hadoop001 jars]# mv /home/hadoop/app/spark-3.0.1-bin-2.6.0-cdh5.7.0/jars/spark-repl_2.12-3.0.1.jar spark-repl_2.12-3.0.1.jar_bak
[root@hadoop001 target]# cp /root/spark/repl/target/spark-repl_2.12-3.0.1.jar /home/hadoop/app/spark-3.0.1-bin-2.6.0-cdh5.7.0/jars/
發現是我們預先假設的結果
5. 總結
在源碼修改的過程中一定要注意,別修改錯了,同時源碼編譯也是一個基本功,需要非常熟練的掌握,可能沒有梯子的會在源碼編譯中遇到不少的錯誤,大多數錯誤是由于網絡造成的。
參考文獻
參考官網
http://spark.apache.org/docs/latest/building-spark.html
spark
版權聲明:本文內容由網絡用戶投稿,版權歸原作者所有,本站不擁有其著作權,亦不承擔相應法律責任。如果您發現本站中有涉嫌抄襲或描述失實的內容,請聯系我們jiasou666@gmail.com 處理,核實后本網站將在24小時內刪除侵權內容。