Excel2016打印預覽表格的教程是什么(excel2016怎么看打印預覽)">Excel2016打印預覽表格的教程是什么(excel2016怎么看打印預覽)
839
2022-05-29
@Author:Runsen
多層感知機(MLP)有著非常悠久的歷史,多層感知機(MLP)是深度神經網絡(DNN)的基礎算法
MLP基礎知識
目的:創建用于簡單回歸/分類任務的常規神經網絡(即多層感知器)和Keras
MLP結構
每個MLP模型由一個輸入層、幾個隱藏層和一個輸出層組成
每層神經元的數目不受限制
回歸任務的MLP
當目標(y)連續時
對于損失函數和評估指標,通常使用均方誤差(MSE)
from tensorflow.keras.datasets import boston_housing (X_train, y_train), (X_test, y_test) = boston_housing.load_data()
數據集描述
波士頓住房數據集共有506個數據實例(404個培訓和102個測試)
13個屬性(特征)預測“某一地點房屋的中值”
文件編號:https://keras.io/datasets/
1.創建模型
Keras模型對象可以用Sequential類創建
一開始,模型本身是空的。它是通過添加附加層和編譯來完成的
文檔:https://keras.io/models/sequential/
from tensorflow.keras.models import Sequential model = Sequential()
1-1.添加層
Keras層可以添加到模型中
添加層就像一個接一個地堆疊樂高積木
文檔:https://keras.io/layers/core/
from tensorflow.keras.layers import Activation, Dense # Keras model with two hidden layer with 10 neurons each model.add(Dense(10, input_shape = (13,))) # Input layer => input_shape should be explicitly designated model.add(Activation('sigmoid')) model.add(Dense(10)) # Hidden layer => only output dimension should be designated model.add(Activation('sigmoid')) model.add(Dense(10)) # Hidden layer => only output dimension should be designated model.add(Activation('sigmoid')) model.add(Dense(1)) # Output layer => output dimension = 1 since it is regression problem # This is equivalent to the above code block model.add(Dense(10, input_shape = (13,), activation = 'sigmoid')) model.add(Dense(10, activation = 'sigmoid')) model.add(Dense(10, activation = 'sigmoid')) model.add(Dense(1))
1-2.模型編譯
Keras模型應在培訓前“編譯”
應指定損失類型(函數)和優化器
文檔(優化器):https://keras.io/optimizers/
文檔(損失):https://keras.io/losses/
from tensorflow.keras import optimizers sgd = optimizers.SGD(lr = 0.01) # stochastic gradient descent optimizer model.compile(optimizer = sgd, loss = 'mean_squared_error', metrics = ['mse']) # for regression problems, mean squared error (MSE) is often employed
模型摘要
model.summary()
odel: "sequential" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= dense (Dense) (None, 10) 140 _________________________________________________________________ activation (Activation) (None, 10) 0 _________________________________________________________________ dense_1 (Dense) (None, 10) 110 _________________________________________________________________ activation_1 (Activation) (None, 10) 0 _________________________________________________________________ dense_2 (Dense) (None, 10) 110 _________________________________________________________________ activation_2 (Activation) (None, 10) 0 _________________________________________________________________ dense_3 (Dense) (None, 1) 11 _________________________________________________________________ dense_4 (Dense) (None, 10) 20 _________________________________________________________________ dense_5 (Dense) (None, 10) 110 _________________________________________________________________ dense_6 (Dense) (None, 10) 110 _________________________________________________________________ dense_7 (Dense) (None, 1) 11 ================================================================= Total params: 622 Trainable params: 622 Non-trainable params: 0 _________________________________________________________________
2.培訓
使用提供的訓練數據訓練模型
model.fit(X_train, y_train, batch_size = 50, epochs = 100, verbose = 1)
3.評估
Keras模型可以用evaluate()函數計算
評估結果包含在列表中
文檔:https://keras.io/metrics/
results = model.evaluate(X_test, y_test)
print(model.metrics_names) # list of metric names the model is employing print(results) # actual figure of metrics computed
print('loss: ', results[0]) print('mse: ', results[1])
Keras 機器學習
版權聲明:本文內容由網絡用戶投稿,版權歸原作者所有,本站不擁有其著作權,亦不承擔相應法律責任。如果您發現本站中有涉嫌抄襲或描述失實的內容,請聯系我們jiasou666@gmail.com 處理,核實后本網站將在24小時內刪除侵權內容。