【AI前沿動態(tài)】GitHub趨勢榜第一:TensorFlow+PyTorch深度學(xué)習(xí)資源大匯總

      網(wǎng)友投稿 1095 2025-03-31

      【新智元導(dǎo)讀】該項目是Jupyter Notebook中TensorFlow和PyTorch的各種深度學(xué)習(xí)架構(gòu),模型和技巧的集合。內(nèi)容非常豐富,適用于Python 3.7,適合當(dāng)做工具書。

      本文搜集整理了Jupyter Notebook中TensorFlow和PyTorch的各種深度學(xué)習(xí)架構(gòu),模型和技巧,內(nèi)容非常豐富,適用于Python 3.7,適合當(dāng)做工具書。

      大家可以將內(nèi)容按照需要進(jìn)行分割,打印出來,或者做成電子書等,隨時查閱。

      傳統(tǒng)機(jī)器學(xué)習(xí)

      感知器

      TensorFlow 1:

      https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/basic-ml/perceptron.ipynb

      PyTorch:

      https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/basic-ml/perceptron.ipynb

      邏輯回歸

      TensorFlow 1:

      https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/basic-ml/logistic-regression.ipynb

      PyTorch:

      https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/basic-ml/logistic-regression.ipynb

      Softmax Regression (Multinomial Logistic Regression)

      TensorFlow 1:

      https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/basic-ml/softmax-regression.ipynb

      PyTorch:

      https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/basic-ml/softmax-regression.ipynb

      多層感知器

      TensorFlow 1:

      https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mlp/mlp-basic.ipynb

      PyTorch:

      https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mlp/mlp-basic.ipynb

      具有Dropout多層感知器

      TensorFlow 1:

      https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mlp/mlp-dropout.ipynb

      PyTorch:

      https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mlp/mlp-dropout.ipynb

      具有批量歸一化的多層感知器

      TensorFlow 1:

      https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mlp/mlp-batchnorm.ipynb

      PyTorch:

      https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mlp/mlp-batchnorm.ipynb

      具有反向傳播的多層感知器

      TensorFlow 1:

      https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mlp/mlp-lowlevel.ipynb

      PyTorch:

      https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mlp/mlp-fromscratch__sigmoid-mse.ipynb

      CNN

      基礎(chǔ)

      CNN

      TensorFlow 1:

      https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/cnn/convnet.ipynb

      PyTorch:

      https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-basic.ipynb

      具有He初始化的CNN

      PyTorch:

      https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-he-init.ipynb

      概念

      用等效卷積層代替完全連接

      PyTorch:

      https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/fc-to-conv.ipynb

      全卷積

      全卷積神經(jīng)網(wǎng)絡(luò)

      PyTorch:

      https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-allconv.ipynb

      AlexNet

      AlexNet on CIFAR-10

      PyTorch:

      https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-alexnet-cifar10.ipynb

      VGG

      CNN VGG-16

      TensorFlow 1:

      https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/cnn/cnn-vgg16.ipynb

      PyTorch:

      https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-vgg16.ipynb

      VGG-16 Gender Classifier Trained on CelebA

      PyTorch:

      https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-vgg16-celeba.ipynb

      CNN VGG-19

      PyTorch:

      https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-vgg19.ipynb

      ResNet

      ResNet and Residual Blocks

      PyTorch:

      https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/resnet-ex-1.ipynb

      ResNet-18 Digit Classifier Trained on MNIST

      PyTorch:

      https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet18-mnist.ipynb

      ResNet-18 Gender Classifier Trained on CelebA

      PyTorch:

      https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet18-celeba-dataparallel.ipynb

      ResNet-34 Digit Classifier Trained on MNIST

      PyTorch:

      https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet34-mnist.ipynb

      ResNet-34 Gender Classifier Trained on CelebA

      PyTorch:

      https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet34-celeba-dataparallel.ipynb

      ResNet-50 Digit Classifier Trained on MNIST

      PyTorch:

      https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet50-mnist.ipynb

      ResNet-50 Gender Classifier Trained on CelebA

      PyTorch:

      https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet50-celeba-dataparallel.ipynb

      ResNet-101 Gender Classifier Trained on CelebA

      PyTorch:

      https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet101-celeba.ipynb

      ResNet-152 Gender Classifier Trained on CelebA

      PyTorch:

      https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet152-celeba.ipynb

      Network in Network

      Network in Network CIFAR-10 Classifier

      PyTorch:

      https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/nin-cifar10.ipynb

      度量學(xué)習(xí)

      具有多層感知器的孿生網(wǎng)絡(luò)

      TensorFlow 1:

      https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/metric/siamese-1.ipynb

      自動編碼機(jī)

      全連接自動編碼機(jī)

      自動編碼機(jī)

      TensorFlow 1:

      https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/autoencoder/autoencoder.ipynb

      PyTorch:

      https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-basic.ipynb

      具有解卷積/轉(zhuǎn)置卷積的卷積自動編碼機(jī)

      TensorFlow 1:

      https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/autoencoder/ae-deconv.ipynb

      PyTorch:

      https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-deconv.ipynb

      具有解卷積的卷積自動編碼機(jī)(無池化操作)

      PyTorch:

      https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/aer-deconv-nopool.ipynb

      具有最近鄰插值的卷積自動編碼機(jī)

      TensorFlow 1:

      https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/autoencoder/autoencoder-conv-nneighbor.ipynb

      PyTorch:

      https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-conv-nneighbor.ipynb

      具有最近鄰插值的卷積自動編碼機(jī) - 在CelebA上進(jìn)行訓(xùn)練

      PyTorch:

      https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-conv-nneighbor-celeba.ipynb

      具有最近鄰插值的卷積自動編碼機(jī) - 在Quickdraw上訓(xùn)練

      PyTorch:

      https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-conv-nneighbor-quickdraw-1.ipynb

      變分自動編碼機(jī)

      變分自動編碼機(jī)

      PyTorch:

      https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-var.ipynb

      卷積變分自動編碼機(jī)

      PyTorch:

      https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-conv-var.ipynb

      條件變分自動編碼機(jī)

      條件變分自動編碼機(jī)(重建丟失中帶標(biāo)簽)

      PyTorch:

      https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-cvae.ipynb

      條件變分自動編碼機(jī)(重建損失中沒有標(biāo)簽)

      PyTorch:

      https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-cvae_no-out-concat.ipynb

      卷積條件變分自動編碼機(jī)(重建丟失中帶標(biāo)簽)

      PyTorch:

      https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-cnn-cvae.ipynb

      卷積條件變分自動編碼機(jī)(重建損失中沒有標(biāo)簽)

      PyTorch:

      https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-cnn-cvae_no-out-concat.ipynb

      GAN

      MNIST上完全連接的GAN

      TensorFlow 1:

      https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/gan/gan.ipynb

      PyTorch:

      https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/gan/gan.ipynb

      MNIST上的卷積GAN

      TensorFlow 1:

      https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/gan/gan-conv.ipynb

      PyTorch:

      https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/gan/gan-conv.ipynb

      【AI前沿動態(tài)】GitHub趨勢榜第一:TensorFlow+PyTorch深度學(xué)習(xí)資源大匯總

      具有標(biāo)簽平滑的MNIST上的卷積GAN

      PyTorch:

      https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/gan/gan-conv-smoothing.ipynb

      RNN

      Many-to-one: Sentiment Analysis / Classification

      A simple single-layer RNN (IMDB)

      PyTorch:

      https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_simple_imdb.ipynb

      A simple single-layer RNN with packed sequences to ignore padding characters (IMDB)

      PyTorch:

      https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_simple_packed_imdb.ipynb

      RNN with LSTM cells (IMDB)

      PyTorch:

      https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_lstm_packed_imdb.ipynb

      RNN with LSTM cells and Own Dataset in CSV Format (IMDB)

      PyTorch:

      https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_lstm_packed_own_csv_imdb.ipynb

      RNN with GRU cells (IMDB)

      PyTorch:

      https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_gru_packed_imdb.ipynb

      Multilayer bi-directional RNN (IMDB)

      PyTorch:

      https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_gru_packed_imdb.ipynb

      Many-to-Many / Sequence-to-Sequence

      A simple character RNN to generate new text (Charles Dickens)

      PyTorch:

      https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/char_rnn-charlesdickens.ipynb

      序數(shù)回歸

      Ordinal Regression CNN -CORAL w. ResNet34 on AFAD-Lite

      PyTorch:

      https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/ordinal/ordinal-cnn-coral-afadlite.ipynb

      Ordinal Regression CNN -Niu et al. 2016 w. ResNet34 on AFAD-Lite

      PyTorch:

      https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/ordinal/ordinal-cnn-niu-afadlite.ipynb

      Ordinal Regression CNN -Beckham and Pal 2016 w. ResNet34 on AFAD-Lite

      PyTorch:

      https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/ordinal/ordinal-cnn-niu-afadlite.ipynb

      技巧和竅門

      Cyclical Learning Rate

      PyTorch:

      https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/tricks/cyclical-learning-rate.ipynb

      PyTorch工作流程和機(jī)制

      自定義數(shù)據(jù)集

      使用PyTorch數(shù)據(jù)集加載實用程序用于自定義數(shù)據(jù)集-CSV文件轉(zhuǎn)換為HDF5

      PyTorch:

      https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/custom-data-loader-csv.ipynb

      使用PyTorch數(shù)據(jù)集加載自定義數(shù)據(jù)集的實用程序 - 來自CelebA的圖像

      PyTorch:

      https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/custom-data-loader-celeba.ipynb

      使用PyTorch數(shù)據(jù)集加載自定義數(shù)據(jù)集的實用程序 - 從Quickdraw中提取

      PyTorch:

      https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/custom-data-loader-quickdraw.ipynb

      使用PyTorch數(shù)據(jù)集加載實用程序用于自定義數(shù)據(jù)集 - 從街景房號(SVHN)數(shù)據(jù)集中繪制

      PyTorch:

      https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/custom-data-loader-svhn.ipynb

      訓(xùn)練和預(yù)處理

      帶固定內(nèi)存的數(shù)據(jù)加載

      PyTorch:

      https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-resnet34-cifar10-pinmem.ipynb

      標(biāo)準(zhǔn)化圖像

      PyTorch:

      https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-standardized.ipynb

      圖像轉(zhuǎn)換示例

      PyTorch:

      https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/torchvision-transform-examples.ipynb

      Char-RNN with Own Text File

      PyTorch:

      https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/char_rnn-charlesdickens.ipynb

      Sentiment Classification RNN with Own CSV File

      PyTorch:

      https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/rnn/rnn_lstm_packed_own_csv_imdb.ipynb

      并行計算

      在CelebA上使用具有DataParallel -VGG-16性別分類器的多個GPU

      PyTorch:

      https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/cnn/cnn-vgg16-celeba-data-parallel.ipynb

      其它

      Sequential API and hooks

      PyTorch:

      https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mlp/mlp-sequential.ipynb

      圖層內(nèi)的權(quán)重共享

      PyTorch:

      https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/cnn-weight-sharing.ipynb

      僅使用Matplotlib在Jupyter Notebook中繪制實時訓(xùn)練性能

      PyTorch:

      https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mlp/plot-jupyter-matplotlib.ipynb

      Autograd

      在PyTorch中獲取中間變量的漸變

      PyTorch:

      https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/manual-gradients.ipynb

      TensorFlow工作流及機(jī)制

      自定義數(shù)據(jù)集

      使用NumPy NPZ Archives為Minibatch訓(xùn)練添加圖像數(shù)據(jù)集

      TensorFlow 1:

      https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mechanics/image-data-chunking-npz.ipynb

      使用HDF5存儲用于Minibatch培訓(xùn)的圖像數(shù)據(jù)集

      TensorFlow 1:

      https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mechanics/image-data-chunking-hdf5.ipynb

      使用輸入Pipeline從TFRecords文件中讀取數(shù)據(jù)

      TensorFlow 1:

      https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mechanics/tfrecords.ipynb

      使用隊列運行器直接從磁盤提供圖像

      TensorFlow 1:

      https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mechanics/file-queues.ipynb

      使用TensorFlow的Dataset API

      TensorFlow 1:

      https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mechanics/dataset-api.ipynb

      訓(xùn)練和預(yù)處理

      保存和加載訓(xùn)練模型 - 來自TensorFlow Checkpoint文件和NumPy NPZ Archives

      TensorFlow 1:

      https://github.com/rasbt/deeplearning-models/blob/master/tensorflow1_ipynb/mechanics/saving-and-reloading-models.ipynb

      參考鏈接:

      https://github.com/rasbt/deeplearning-models

      轉(zhuǎn)自:新智元

      EI 人工智能 AI

      版權(quán)聲明:本文內(nèi)容由網(wǎng)絡(luò)用戶投稿,版權(quán)歸原作者所有,本站不擁有其著作權(quán),亦不承擔(dān)相應(yīng)法律責(zé)任。如果您發(fā)現(xiàn)本站中有涉嫌抄襲或描述失實的內(nèi)容,請聯(lián)系我們jiasou666@gmail.com 處理,核實后本網(wǎng)站將在24小時內(nèi)刪除侵權(quán)內(nèi)容。

      版權(quán)聲明:本文內(nèi)容由網(wǎng)絡(luò)用戶投稿,版權(quán)歸原作者所有,本站不擁有其著作權(quán),亦不承擔(dān)相應(yīng)法律責(zé)任。如果您發(fā)現(xiàn)本站中有涉嫌抄襲或描述失實的內(nèi)容,請聯(lián)系我們jiasou666@gmail.com 處理,核實后本網(wǎng)站將在24小時內(nèi)刪除侵權(quán)內(nèi)容。

      上一篇:如何讓表格里的數(shù)據(jù)按照從大到小排序(怎樣把一個表格里的數(shù)據(jù)從小到大排序)
      下一篇:如何計算在Excel中通過的年或月的百分比?
      相關(guān)文章
      亚洲w码欧洲s码免费| 久久亚洲成a人片| 亚洲高清美女一区二区三区| 亚洲日本一区二区三区在线| 国产精品久久久久久亚洲影视| 亚洲一欧洲中文字幕在线| 亚洲精品一区二区三区四区乱码| 亚洲色图在线观看| 亚洲精品视频在线| 亚洲好看的理论片电影| 亚洲AV成人无码久久精品老人| 久久久久久久综合日本亚洲| 日本亚洲视频在线| 亚洲国产精品无码久久久不卡| 亚洲成av人在线视| 亚洲av无码国产精品夜色午夜 | 亚洲成亚洲乱码一二三四区软件| 亚洲日韩在线观看免费视频| 亚洲精品国产福利一二区| 亚洲日韩国产成网在线观看| 亚洲综合色在线观看亚洲| 亚洲中文字幕在线观看| 亚洲男同帅GAY片在线观看| 国产亚洲综合一区柠檬导航| 久久亚洲一区二区| 亚洲邪恶天堂影院在线观看| 亚洲综合日韩中文字幕v在线| 亚洲综合在线成人一区| 亚洲一级毛片视频| 亚洲色大网站WWW永久网站| 亚洲女子高潮不断爆白浆| 337P日本欧洲亚洲大胆艺术图 | 国产精品亚洲专区无码唯爱网| 亚洲av中文无码字幕色不卡| 精品国产亚洲第一区二区三区| 国产亚洲Av综合人人澡精品| 亚洲国产精品自产在线播放| 亚洲人成图片小说网站| 亚洲国产精品无码AAA片| 亚洲精品国产成人99久久| 亚洲一卡2卡4卡5卡6卡在线99 |