meminfo 詳解

      網(wǎng)友投稿 1052 2025-04-02

      1、meminfo統(tǒng)計(jì)信息原文? "cat /proc/meminfo":


      MemTotal:? 1031016 kB

      MemFree:? 13548 kB

      MemShared:? 0 kB

      Buffers:? 98064 kB

      Cached:? ?692320 kB

      SwapCached:? 2244 kB

      Active:? ?563112 kB

      Inact_dirty:? 309584 kB

      Inact_clean:? 79508 kB

      Inact_target:? 190440 kB

      HighTotal:? 130992 kB

      HighFree:? 1876 kB

      LowTotal:? 900024 kB

      LowFree:? 11672 kB

      SwapTotal:? 1052248 kB

      SwapFree:? 1043908 kB

      Committed_AS:? 332340 kB

      The information comes in the form of both high-level and low-level statistics. At the top you see a quick summary of the most common values people would like to look at. Below you find the individual values we will discuss. First we will discuss the high-level statistics.

      High-Level Statistics

      MemTotal: Total usable ram (i.e. physical ram minus a few reserved bits and the kernel binary code)

      MemFree: Is sum of LowFree+HighFree (overall stat)

      MemShared: 0; is here for compat reasons but always zero.

      Buffers: Memory in buffer cache. mostly useless as metric nowadays

      Cached: Memory in the pagecache (diskcache) minus SwapCache

      SwapCache: Memory that once was swapped out, is swapped back in but still also is in the swapfile (if memory is needed it doesn't need to be swapped out AGAIN because it is already in the swapfile. This saves I/O)

      Detailed Level Statistics

      VM Statistics

      VM splits the cache pages into "active" and "inactive" memory. The idea is that if you need memory and some cache needs to be sacrificed for that, you take it from inactive since that's expected to be not used. The vm checks what is used on a regular basis and moves stuff around.

      When you use memory, the CPU sets a bit in the pagetable and the VM checks that bit occasionally, and based on that, it can move pages back to active. And within active there's an order of "longest ago not used" (roughly, it's a little more complex in reality). The longest-ago used ones can get moved to inactive. Inactive is split into two in the above kernel (2.4.18-24.8.0). Some have it three.

      Active: Memory that has been used more recently and usually not reclaimed unless absolutely necessary.

      Inact_dirty: Dirty means "might need writing to disk or swap." Takes more work to free. Examples might be files that have not been written to yet. They aren't written to memory too soon in order to keep the I/O down. For instance, if you're writing logs, it might be better to wait until you have a complete log ready before sending it to disk.

      Inact_clean: Assumed to be easily freeable. The kernel will try to keep some clean stuff around always to have a bit of breathing room.

      Inact_target: Just a goal metric the kernel uses for making sure there are enough inactive pages around. When exceeded, the kernel will not do work to move pages from active to inactive. A page can also get inactive in a few other ways, e.g. if you do a long sequential I/O, the kernel assumes you're not going to use that memory and makes it inactive preventively. So you can get more inactive pages than the target because the kernel marks some cache as "more likely to be never used" and lets it cheat in the "last used" order.

      Memory Statistics

      HighTotal: is the total amount of memory in the high region. Highmem is all memory above (approx) 860MB of physical RAM. Kernel uses indirect tricks to access the high memory region. Data cache can go in this memory region.

      LowTotal: The total amount of non-highmem memory.

      LowFree: The amount of free memory of the low memory region. This is the memory the kernel can address directly. All kernel datastructures need to go into low memory.

      SwapTotal: Total amount of physical swap memory.

      SwapFree: Total amount of swap memory free.

      Committed_AS: An estimate of how much RAM you would need to make a 99.99% guarantee that there never is OOM (out of memory) for this workload. Normally the kernel will overcommit memory. That means, say you do a 1GB malloc, nothing happens, really. Only when you start USING that malloc memory you will get real memory on demand, and just as much as you use. So you sort of take a mortgage and hope the bank doesn't go bust. Other cases might include when you mmap a file that's shared only when you write to it and you get a private copy of that data. While it normally is shared between processes. The Committed_AS is a guesstimate of how much RAM/swap you would need worst-case.

      2、meminfo統(tǒng)計(jì)信息譯文? "cat /proc/meminfo":

      MemTotal: 507480 kB

      MemFree: 10800 kB

      Buffers: 34728 kB

      Cached: 98852 kB

      SwapCached: 128 kB

      Active: 304248 kB

      Inactive: 46192 kB

      HighTotal: 0 kB

      HighFree: 0 kB

      LowTotal: 507480 kB

      LowFree: 10800 kB

      SwapTotal: 979956 kB

      SwapFree: 941296 kB

      Dirty: 32 kB

      Writeback: 0 kB

      AnonPages: 216756 kB

      Mapped: 77560 kB

      meminfo 詳解

      Slab: 22952 kB

      SReclaimable: 15512 kB

      SUnreclaim: 7440 kB

      PageTables: 2640 kB

      NFS_Unstable: 0 kB

      Bounce: 0 kB

      CommitLimit: 1233696 kB

      Committed_AS: 828508 kB

      VmallocTotal: 516088 kB

      VmallocUsed: 5032 kB

      VmallocChunk: 510580 kB

      MemTotal: 所有可用RAM大小 (即物理內(nèi)存減去一些預(yù)留位和內(nèi)核的二進(jìn)制代碼大小)

      MemFree: LowFree與HighFree的總和,被系統(tǒng)留著未使用的內(nèi)存

      Buffers: 用來給文件做緩沖大小

      Cached: 被高速緩沖存儲(chǔ)器(cache memory)用的內(nèi)存的大小(等于 diskcache minus SwapCache ).

      SwapCached:被高速緩沖存儲(chǔ)器(cache memory)用的交換空間的大小已經(jīng)

      被交換出來的內(nèi)存,但仍然被存放在swapfile中。用來在需要的時(shí)候很快的

      被替換而不需要再次打開I/O端口。

      Active: 在活躍使用中的緩沖或高速緩沖存儲(chǔ)器頁面文件的大小,除非非常必要否則不會(huì)被移作他用.

      Inactive: 在不經(jīng)常使用中的緩沖或高速緩沖存儲(chǔ)器頁面文件的大小,可能被用于其他途徑.

      HighTotal:

      HighFree: 該區(qū)域不是直接映射到內(nèi)核空間。內(nèi)核必須使用不同的手法使用該段內(nèi)存。

      LowTotal:

      LowFree: 低位可以達(dá)到高位內(nèi)存一樣的作用,而且它還能夠被內(nèi)核用來記錄

      一些自己的數(shù)據(jù)結(jié)構(gòu)。Among many other things, it is where

      everything from the Slab is allocated.? Bad things happen

      when you're out of lowmem.

      SwapTotal: 交換空間的總大小

      SwapFree: 未被使用交換空間的大小

      Dirty: 等待被寫回到磁盤的內(nèi)存大小。

      Writeback: 正在被寫回到磁盤的內(nèi)存大小。

      AnonPages:未映射頁的內(nèi)存大小

      Mapped: 設(shè)備和文件等映射的大小。

      Slab: 內(nèi)核數(shù)據(jù)結(jié)構(gòu)緩存的大小,可以減少申請(qǐng)和釋放內(nèi)存帶來的消耗。

      SReclaimable:可收回Slab的大小

      SUnreclaim:不可收回Slab的大小(SUnreclaim+SReclaimable=Slab)

      PageTables:管理內(nèi)存分頁頁面的索引表的大小。

      NFS_Unstable:不穩(wěn)定頁表的大小

      Bounce:

      CommitLimit: Based on the overcommit ratio('vm.overcommit_ratio'),

      this is the total amount of? memory currently available to

      be allocated on the system. This limit is only adhered to

      if strict overcommit accounting is enabled (mode 2 in

      'vm.overcommit_memory').

      The CommitLimit is calculated with the following formula:

      CommitLimit = ('vm.overcommit_ratio' * Physical RAM) + Swap

      For example, on a system with 1G of physical RAM and 7G

      of swap with a `vm.overcommit_ratio` of 30 it would

      yield a CommitLimit of 7.3G.

      For more details, see the memory overcommit documentation

      in vm/overcommit-accounting.

      Committed_AS: The amount of memory presently allocated on

      the system.

      The committed memory is a sum of all of the memory which

      has been allocated by processes, even if it has not been

      "used" by them as of yet. A process which malloc()'s 1G

      of memory, but only touches 300M of it will only show up

      as using 300M of memory even if it has the address space

      allocated for the entire 1G. This 1G is memory which has

      been "committed" to by the VM and can be used at any time

      by the allocating application. With strict overcommit

      enabled on the system (mode 2 in 'vm.overcommit_memory'),

      allocations which would exceed the CommitLimit (detailed

      above) will not be permitted. This is useful if one needs

      to guarantee that processes will not fail due to lack of

      memory once that memory has been successfully allocated.

      VmallocTotal: 可以vmalloc虛擬內(nèi)存大小

      VmallocUsed: 已經(jīng)被使用的虛擬內(nèi)存大小。

      VmallocChunk: largest contigious block of vmalloc area which is free

      下面簡單來個(gè)例子,看看已用內(nèi)存和物理內(nèi)存大小..

      #include

      #include

      #include

      int MemInfo(char* Info, int len);

      int main()

      {

      char buf[128];

      memset(buf, 0, 128);

      MemInfo(buf, 100);

      printf("%s", buf);

      return 0;

      }

      int MemInfo(char* Info, int len)

      {

      char sStatBuf[256];

      FILE* fp;

      int flag;

      int TotalMem;

      int UsedMem;

      char* line;

      if(system("free -m | awk '{print $2,$3}' > mem"));

      memset(sStatBuf, 0, 256);

      fp = fopen("mem", "rb");

      if(fp < 0)

      {

      return -1;

      }

      fread(sStatBuf,1, sizeof(sStatBuf) , fp);

      line = strstr(sStatBuf, "n");

      TotalMem = atoi(line);

      line = strstr(line, " ");

      UsedMem = atoi(line);

      memset(sStatBuf, 0, 256);

      sprintf(sStatBuf, "Used %dM/Total %dMn", UsedMem, TotalMem);

      if(strlen(sStatBuf) > len)

      {

      return -1;

      }

      memcpy(Info, sStatBuf, strlen(sStatBuf));

      return 0;

      }

      結(jié)果:Used 488M/Total 495M

      3、meminfo 代碼解析

      那么內(nèi)核怎么把meminfo信息動(dòng)態(tài)反應(yīng)到meminfo文件中呢

      在內(nèi)核 linux/fs/proc/proc_misc.c中

      static int meminfo_read_proc(char *page, char **start, off_t off,

      int count, int *eof, void *data)

      {

      struct sysinfo i;

      int len;

      unsigned long committed;

      unsigned long allowed;

      struct vmalloc_info vmi;

      long cached;

      #define K(x) ((x) << (PAGE_SHIFT - 10))

      /**

      *該宏作用把存儲(chǔ)單位傳換成 kb

      */

      si_meminfo(&i);

      si_swapinfo(&i);

      /**

      *這兩個(gè)函數(shù)是對(duì)struct sysinfo結(jié)構(gòu)進(jìn)行初始化的

      */

      committed = atomic_read(&vm_committed_space);

      allowed = ((totalram_pages - hugetlb_total_pages())

      * sysctl_overcommit_ratio / 100) + total_swap_pages;

      /**

      *其中這項(xiàng)根據(jù)上篇文章CommitLimit解釋計(jì)算的

      */

      cached = global_page_state(NR_FILE_PAGES) -

      total_swapcache_pages - i.bufferram;

      if (cached < 0)

      cached = 0;

      get_vmalloc_info(&vmi);

      /*

      * Tagged format, for easy grepping and expansion.

      */

      len = sprintf(page,

      "MemTotal: %8lu kBn"

      "MemFree: %8lu kBn"

      "Buffers: %8lu kBn"

      "Cached: %8lu kBn"

      "SwapCached: %8lu kBn"

      "Active: %8lu kBn"

      "Inactive: %8lu kBn"

      #ifdef CONFIG_HIGHMEM

      "HighTotal: %8lu kBn"

      "HighFree: %8lu kBn"

      "LowTotal: %8lu kBn"

      "LowFree: %8lu kBn"

      #endif

      "SwapTotal: %8lu kBn"

      "SwapFree: %8lu kBn"

      "Dirty:? ? ?%8lu kBn"

      "Writeback: %8lu kBn"

      "AnonPages: %8lu kBn"

      "Mapped: %8lu kBn"

      "Slab:? ? ? %8lu kBn"

      "SReclaimable: %8lu kBn"

      "SUnreclaim: %8lu kBn"

      "PageTables: %8lu kBn"

      "NFS_Unstable: %8lu kBn"

      "Bounce: %8lu kBn"

      "CommitLimit: %8lu kBn"

      "Committed_AS: %8lu kBn"

      "VmallocTotal: %8lu kBn"

      "VmallocUsed: %8lu kBn"

      "VmallocChunk: %8lu kBn",

      K(i.totalram),

      K(i.freeram),

      K(i.bufferram),

      K(cached),

      K(total_swapcache_pages),

      K(global_page_state(NR_ACTIVE)),

      K(global_page_state(NR_INACTIVE)),

      #ifdef CONFIG_HIGHMEM

      K(i.totalhigh),

      K(i.freehigh),

      K(i.totalram-i.totalhigh),

      K(i.freeram-i.freehigh),

      #endif

      K(i.totalswap),

      K(i.freeswap),

      K(global_page_state(NR_FILE_DIRTY)),

      K(global_page_state(NR_WRITEBACK)),

      K(global_page_state(NR_ANON_PAGES)),

      K(global_page_state(NR_FILE_MAPPED)),

      K(global_page_state(NR_SLAB_RECLAIMABLE) +

      global_page_state(NR_SLAB_UNRECLAIMABLE)),

      K(global_page_state(NR_SLAB_RECLAIMABLE)),

      K(global_page_state(NR_SLAB_UNRECLAIMABLE)),

      K(global_page_state(NR_PAGETABLE)),

      K(global_page_state(NR_UNSTABLE_NFS)),

      K(global_page_state(NR_BOUNCE)),

      K(allowed),

      K(committed),

      (unsigned long)VMALLOC_TOTAL >> 10,

      vmi.used >> 10,

      vmi.largest_chunk >> 10

      );

      len += hugetlb_report_meminfo(page + len);

      return proc_calc_metrics(page, start, off, count, eof, len);

      #undef K

      }

      其中sysinfo結(jié)構(gòu)在 linux/kernel.h? 定義:

      struct sysinfo {

      long uptime; /* 啟動(dòng)到現(xiàn)在經(jīng)過的時(shí)間 */

      unsigned long loads[3];

      /* 1, 5, and 15 minute load averages */

      unsigned long totalram; /* 總的可用的內(nèi)存大小 */

      unsigned long freeram; /* 還未被使用的內(nèi)存大小 */

      unsigned long sharedram; /* 共享的存儲(chǔ)器的大小*/

      unsigned long bufferram; /* 的存儲(chǔ)器的大小 */

      unsigned long totalswap; /* 交換區(qū)大小 */

      unsigned long freeswap; /* 還可用的交換區(qū)大小 */

      unsigned short procs; /* 當(dāng)前進(jìn)程數(shù)目 */

      unsigned short pad; /* explicit padding for m68k */

      unsigned long totalhigh; /* 總的高內(nèi)存大小 */

      unsigned long freehigh; /* 可用的高內(nèi)存大小 */

      unsigned int mem_unit; /* 以字節(jié)為單位的內(nèi)存大小 */

      char _f[20-2*sizeof(long)-sizeof(int)];

      };

      而global_page_state()函數(shù)中的常量定義在 linux/mmzone.h

      enum zone_stat_item {

      /* First 128 byte cacheline (assuming 64 bit words) */

      NR_FREE_PAGES,

      NR_INACTIVE,

      NR_ACTIVE,

      NR_ANON_PAGES, /* Mapped anonymous pages */

      NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.

      only modified from process context */

      NR_FILE_PAGES,

      NR_FILE_DIRTY,

      NR_WRITEBACK,

      /* Second 128 byte cacheline */

      NR_SLAB_RECLAIMABLE,

      NR_SLAB_UNRECLAIMABLE,

      NR_PAGETABLE,? ? ? /* used for pagetables */

      NR_UNSTABLE_NFS,? ? ?/* NFS unstable pages */

      NR_BOUNCE,

      NR_VMSCAN_WRITE,

      #ifdef CONFIG_NUMA

      NUMA_HIT,? ? ? /* allocated in intended node */

      NUMA_MISS,? ? ? /* allocated in non intended node */

      NUMA_FOREIGN,? ? ? /* was intended here, hit elsewhere */

      NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */

      NUMA_LOCAL,? ? ? /* allocation from local node */

      NUMA_OTHER,? ? ? /* allocation from other node */

      #endif

      NR_VM_ZONE_STAT_ITEMS

      };

      其中通過global_page_state()函數(shù)根據(jù) zone_stat_item 結(jié)構(gòu)的常量得到不同區(qū)大小,會(huì)跟 vm_stat[NR_VM_ZONE_STAT_ITEMS]對(duì)應(yīng)起來。

      vm_stat[]是統(tǒng)計(jì)各區(qū)的大小。

      內(nèi)核 linux/vmstat.h定義:

      static inline unsigned long global_page_state(enum zone_stat_item item)

      {

      long x = atomic_long_read(&vm_stat[item]);

      #ifdef CONFIG_SMP

      if (x < 0)

      x = 0;

      #endif

      return x;

      }

      下面根據(jù)struct sysinfo結(jié)構(gòu),簡單分析CPU和內(nèi)存使用信息。

      #include

      #include /* 包含調(diào)用 _syscallX 宏等相關(guān)信息*/

      #include /* 包含sysinfo結(jié)構(gòu)體信息*/

      int main(int argc, char *agrv[])

      {

      struct sysinfo s_info;

      int error;

      error = sysinfo(&s_info);

      printf("nncode error=%dn",error);

      printf("Uptime = %dsnLoad: 1 min%d / 5 min %d / 15 min %dn"

      "RAM: total %d / free %d /shared%dn"

      "Memory in buffers = %dnSwap:total%d/free%dn"

      "Number of processes = %dn",

      s_info.uptime, s_info.loads[0],

      s_info.loads[1], s_info.loads[2],

      s_info.totalram, s_info.freeram,

      s_info.totalswap, s_info.freeswap,

      s_info.procs);

      return 0;

      }

      結(jié)果:

      code error=0

      Uptime = 8329s

      Load: 1 min37152 / 5 min 37792 / 15 min 48672

      RAM: total 519659520 / free 9031680 /shared1003474944

      Memory in buffers = 937451520

      Swap:total223/free-1078732672

      Number of processes = -1078732608

      文章轉(zhuǎn)自異步社區(qū)

      軟件開發(fā)

      版權(quán)聲明:本文內(nèi)容由網(wǎng)絡(luò)用戶投稿,版權(quán)歸原作者所有,本站不擁有其著作權(quán),亦不承擔(dān)相應(yīng)法律責(zé)任。如果您發(fā)現(xiàn)本站中有涉嫌抄襲或描述失實(shí)的內(nèi)容,請(qǐng)聯(lián)系我們jiasou666@gmail.com 處理,核實(shí)后本網(wǎng)站將在24小時(shí)內(nèi)刪除侵權(quán)內(nèi)容。

      版權(quán)聲明:本文內(nèi)容由網(wǎng)絡(luò)用戶投稿,版權(quán)歸原作者所有,本站不擁有其著作權(quán),亦不承擔(dān)相應(yīng)法律責(zé)任。如果您發(fā)現(xiàn)本站中有涉嫌抄襲或描述失實(shí)的內(nèi)容,請(qǐng)聯(lián)系我們jiasou666@gmail.com 處理,核實(shí)后本網(wǎng)站將在24小時(shí)內(nèi)刪除侵權(quán)內(nèi)容。

      上一篇:借款用于生產(chǎn)線制造(借款用于生產(chǎn)經(jīng)營)
      下一篇:多個(gè)word文檔怎么批量更改某一個(gè)內(nèi)容(如何批量修改多個(gè)word文檔中的內(nèi)容)
      相關(guān)文章
      亚洲国产精品无码久久九九| 亚洲成A人片77777国产| 亚洲尤码不卡AV麻豆| 久久无码av亚洲精品色午夜| 亚洲精品无码少妇30P| 亚洲综合国产成人丁香五月激情 | 亚洲国产精品一区二区第一页免| 亚洲国产成人精品无码区花野真一| 亚洲人成网站色在线观看| 亚洲国产av美女网站| 亚洲天堂电影在线观看| 亚洲伊人久久大香线焦| 91亚洲精品自在在线观看| 亚洲人成在线免费观看| 亚洲人成网站在线观看播放动漫| 亚洲国产成a人v在线观看| 亚洲国产熟亚洲女视频| 亚洲欧美日韩综合俺去了| 亚洲Av无码国产一区二区| 久久亚洲中文无码咪咪爱| 日韩色视频一区二区三区亚洲| 国产偷国产偷亚洲高清在线| 亚洲国产精品嫩草影院久久| 中文字幕亚洲无线码a| 亚洲国产另类久久久精品黑人| 亚洲va久久久噜噜噜久久狠狠 | 国产亚洲人成网站在线观看不卡| 亚洲成AV人片在线观看无| 亚洲精选在线观看| 亚洲特级aaaaaa毛片| 亚洲一区二区三区乱码在线欧洲| 亚洲精品国产suv一区88| 精品国产亚洲第一区二区三区| 午夜亚洲福利在线老司机| 亚洲人成人网站在线观看| 亚洲色成人中文字幕网站| 久久精品国产亚洲夜色AV网站| 亚洲精品美女在线观看| 亚洲大成色www永久网址| 亚洲日韩在线中文字幕综合 | 亚洲精品高清国产麻豆专区|