【智簡聯接,萬物互聯】華為云·云享專家董昕:Serverless和微服務下, IoT的變革蓄勢待發
772
2022-05-30
前提條件
部署拓撲
docker 鏡像
構建 docker 鏡像
部署清單
前提條件
部署拓撲
docker 鏡像
構建 docker 鏡像
部署清單
Kubernetes部署
部署組件
部署清單
主執行腳本
jmeter_slaves
jmeter_master
influxdb
grafana
初始化 dashboard
啟動 dashboard 腳本
部署清單
啟動測試
執行腳本
部署清單
小結
前提條件
Kubernetes > 1.16
部署拓撲
可以從 master 節點啟動測試,master 節點把對應的測試腳本發送到對應的 slaves 節點,slave 節點的 pod/nodes 主要作用即發壓。
部署文件清單:
jmeter_cluster_create.sh — 此腳本將要求一個唯一的 namespace,然后它將繼續創建命名空間和所有組件(jmeter master,slaves,influxdb 和 grafana)。
注意:在啟動前,請在jmeter_slaves_deploy.yaml文件中設置要用于 slaves 服務器的副本數,通常副本數應與擁有的 worker nodes 相匹配。
jmeter_master_configmap.yaml — Jmeter master 的應用配置。
jmeter_master_deployment.yaml — Jmeter master 的部署清單。
jmeter_slaves_deploy.yaml — Jmeter slave 的部署清單。
jmeter_slave_svc.yaml — jmeter slave 的服務清單。使用 headless service,這使我們能夠直接獲取 jmeter slave 的 POD IP 地址,而我們不需要 DNS 或輪詢。創建此文件是為了使 slave Pod IP 地址更容易直接發送到 jmeter master。
jmeter_influxdb_configmap.yaml — influxdb 部署的應用配置。如果要在默認的 influxdb 端口之外使用 graphite 存儲方法,這會將 influxdb 配置為暴露端口 2003,以便支持 graphite 。因此,可以使用 influxdb 部署來支持jmeter 后置-方法(graphite 和 influxdb)。
jmeter_influxdb_deploy.yaml — Influxdb 的部署清單
jmeter_influxdb_svc.yaml — Influxdb 的服務清單。
jmeter_grafana_deploy.yaml — grafana 部署清單。
jmeter_grafana_svc.yaml — grafana 部署的服務清單,默認情況下使用 NodePort,如果公有云中運行它,則可以將其更改為 LoadBalancer(并且可以設置 CNAME 以使用 FQDN 縮短名稱)。
dashboard.sh — 該腳本用于自動創建以下內容:
(1)influxdb pod 中的一個 influxdb 數據庫(Jmeter)
(2)grafana 中的數據源(jmeterdb)
start_test.sh —此腳本用于自動運行 Jmeter 測試腳本,而無需手動登錄 Jmeter 主 shell,它將詢問 Jmeter 測試腳本的位置,然后將其復制到 Jmeter master pod 并啟動自動對 Jmeter slave 進行測試。
jmeter_stop.sh - 停止測試
GrafanaJMeterTemplate.json — 預先構建的 Jmeter grafana 儀表板。
Dockerfile-base - 構建 Jmeter 基礎鏡像
Dockerfile-master - 構建 Jmeter master 鏡像
Dockerfile-slave - 構建 Jmeter slave 鏡像
Dockerimages.sh - 批量構建 docker 鏡像
docker 鏡像
構建 docker 鏡像
執行腳本,構建鏡像:
./dockerimages.sh
查看鏡像:
$ docker images
將鏡像推送到 Registry:
$ sudo docker login --username=xxxx registry.cn-beijing.aliyuncs.com $ sudo docker tag [ImageId] registry.cn-beijing.aliyuncs.com/7d/jmeter-base:[鏡像版本號] $ sudo docker push registry.cn-beijing.aliyuncs.com/7d/jmeter-base:[鏡像版本號]
部署清單
Dockerfile-base (構建 Jmeter 基礎鏡像):
FROM alpine:latest LABEL MAINTAINER 7DGroup ARG JMETER_VERSION=5.2.1 #定義時區參數 ENV TZ=Asia/Shanghai RUN apk update && \ apk upgrade && \ apk add --update openjdk8-jre wget tar bash && \ mkdir /jmeter && cd /jmeter/ && \ wget https://mirrors.tuna.tsinghua.edu.cn/apache/jmeter/binaries/apache-jmeter-${JMETER_VERSION}.tgz && \ tar -xzf apache-jmeter-$JMETER_VERSION.tgz && rm apache-jmeter-$JMETER_VERSION.tgz && \ cd /jmeter/apache-jmeter-$JMETER_VERSION/ && \ wget -q -O /tmp/JMeterPlugins-Standard-1.4.0.zip https://jmeter-plugins.org/downloads/file/JMeterPlugins-Standard-1.4.0.zip && unzip -n /tmp/JMeterPlugins-Standard-1.4.0.zip && rm /tmp/JMeterPlugins-Standard-1.4.0.zip && \ wget -q -O /jmeter/apache-jmeter-$JMETER_VERSION/lib/ext/pepper-box-1.0.jar https://github.com/raladev/load/blob/master/JARs/pepper-box-1.0.jar?raw=true && \ cd /jmeter/apache-jmeter-$JMETER_VERSION/ && \ wget -q -O /tmp/bzm-parallel-0.7.zip https://jmeter-plugins.org/files/packages/bzm-parallel-0.7.zip && \unzip -n /tmp/bzm-parallel-0.7.zip && rm /tmp/bzm-parallel-0.7.zip && \ ln -snf /usr/share/zoneinfo/$TZ /etc/localtime && echo "$TZ" > /etc/timezone ENV JMETER_HOME /jmeter/apache-jmeter-$JMETER_VERSION/ ENV PATH $JMETER_HOME/bin:$PATH #JMeter 主配置文件 ADD jmeter.properties $JMETER_HOME/bin/jmeter.properties
Dockerfile-master(構建 Jmeter master 鏡像):
FROM registry.cn-beijing.aliyuncs.com/7d/jmeter-base:latest MAINTAINER 7DGroup EXPOSE 60000
Dockerfile-slave(構建 Jmeter slave 鏡像):
Dockerfile-slave: FROM registry.cn-beijing.aliyuncs.com/7d/jmeter-base:latest MAINTAINER 7DGroup EXPOSE 1099 50000 ENTRYPOINT $JMETER_HOME/bin/jmeter-server \ -Dserver.rmi.localport=50000 \ -Dserver_port=1099 \ -Jserver.rmi.ssl.disable=true
Dockerimages.sh(批量構建 docker 鏡像):
#!/bin/bash -e docker build --tag="registry.cn-beijing.aliyuncs.com/7d/jmeter-base:latest" -f Dockerfile-base . docker build --tag="registry.cn-beijing.aliyuncs.com/7d/jmeter-master:latest" -f Dockerfile-master . docker build --tag="registry.cn-beijing.aliyuncs.com/7d/jmeter-slave:latest" -f Dockerfile-slave .
Kubernetes部署
部署組件
執行jmeter_cluster_create.sh,并輸入一個唯一的 namespace
./jmeter_cluster_create.sh
等待一會,查看pods安裝情況:
$ kubectl get pods -n 7dgroup NAME READY STATUS RESTARTS AGE influxdb-jmeter-584cf69759-j5m85 1/1 Running 2 5m jmeter-grafana-6d5b75b7f6-57dxj 1/1 Running 1 5m jmeter-master-84bfd5d96d-kthzm 1/1 Running 0 5m jmeter-slaves-b5b75757-dxkxz 1/1 Running 0 5m jmeter-slaves-b5b75757-n58jw 1/1 Running 0 5m
部署清單
jmeter_cluster_create.sh(創建命名空間和所有組件(jmeter master,slaves,influxdb 和 grafana)):
#!/usr/bin/env bash #Create multiple Jmeter namespaces on an existing kuberntes cluster #Started On January 23, 2018 working_dir=`pwd` echo "checking if kubectl is present" if ! hash kubectl 2>/dev/null then echo "'kubectl' was not found in PATH" echo "Kindly ensure that you can acces an existing kubernetes cluster via kubectl" exit fi kubectl version --short echo "Current list of namespaces on the kubernetes cluster:" echo kubectl get namespaces | grep -v NAME | awk '{print }' echo echo "Enter the name of the new tenant unique name, this will be used to create the namespace" read tenant echo #Check If namespace exists kubectl get namespace $tenant > /dev/null 2>&1 if [ $? -eq 0 ] then echo "Namespace $tenant already exists, please select a unique name" echo "Current list of namespaces on the kubernetes cluster" sleep 2 kubectl get namespaces | grep -v NAME | awk '{print }' exit 1 fi echo echo "Creating Namespace: $tenant" kubectl create namespace $tenant echo "Namspace $tenant has been created" echo echo "Creating Jmeter slave nodes" nodes=`kubectl get no | egrep -v "master|NAME" | wc -l` echo echo "Number of worker nodes on this cluster is " $nodes echo #echo "Creating $nodes Jmeter slave replicas and service" echo kubectl create -n $tenant -f $working_dir/jmeter_slaves_deploy.yaml kubectl create -n $tenant -f $working_dir/jmeter_slaves_svc.yaml echo "Creating Jmeter Master" kubectl create -n $tenant -f $working_dir/jmeter_master_configmap.yaml kubectl create -n $tenant -f $working_dir/jmeter_master_deploy.yaml echo "Creating Influxdb and the service" kubectl create -n $tenant -f $working_dir/jmeter_influxdb_configmap.yaml kubectl create -n $tenant -f $working_dir/jmeter_influxdb_deploy.yaml kubectl create -n $tenant -f $working_dir/jmeter_influxdb_svc.yaml echo "Creating Grafana Deployment" kubectl create -n $tenant -f $working_dir/jmeter_grafana_deploy.yaml kubectl create -n $tenant -f $working_dir/jmeter_grafana_svc.yaml echo "Printout Of the $tenant Objects" echo kubectl get -n $tenant all echo namespace = $tenant > $working_dir/tenant_export
jmeter_slaves_deploy.yaml(Jmeter slave 的部署清單):
apiVersion: apps/v1 kind: Deployment metadata: name: jmeter-slaves labels: jmeter_mode: slave spec: replicas: 2 selector: matchLabels: jmeter_mode: slave template: metadata: labels: jmeter_mode: slave spec: containers: - name: jmslave image: registry.cn-beijing.aliyuncs.com/7d/jmeter-slave:latest imagePullPolicy: IfNotPresent ports: - containerPort: 1099 - containerPort: 50000 resources: limits: cpu: 4000m memory: 4Gi requests: cpu: 500m memory: 512Mi
jmeter_slaves_svc.yaml( Jmeter slave 的服務清單):
apiVersion: v1 kind: Service metadata: name: jmeter-slaves-svc labels: jmeter_mode: slave spec: clusterIP: None ports: - port: 1099 name: first targetPort: 1099 - port: 50000 name: second targetPort: 50000
jmeter_master_configmap.yaml(jmeter_master 應用配置):
apiVersion: v1 kind: ConfigMap metadata: name: jmeter-load-test labels: app: influxdb-jmeter data: load_test: | #!/bin/bash #Script created to invoke jmeter test script with the slave POD IP addresses #Script should be run like: ./load_test "path to the test script in jmx format" /jmeter/apache-jmeter-*/bin/jmeter -n -t `getent ahostsv4 jmeter-slaves-svc | cut -d' ' -f1 | sort -u | awk -v ORS=, '{print }' | sed 's/,$//'`
jmeter_master_deploy.yaml(jmeter_master 部署清單):
apiVersion: apps/v1 # for versions before 1.9.0 use apps/v1beta2 kind: Deployment metadata: name: jmeter-master labels: jmeter_mode: master spec: replicas: 1 selector: matchLabels: jmeter_mode: master template: metadata: labels: jmeter_mode: master spec: containers: - name: jmmaster image: registry.cn-beijing.aliyuncs.com/7d/jmeter-master:latest imagePullPolicy: IfNotPresent command: [ "/bin/bash", "-c", "--" ] args: [ "while true; do sleep 30; done;" ] volumeMounts: - name: loadtest mountPath: /load_test subPath: "load_test" ports: - containerPort: 60000 resources: limits: cpu: 4000m memory: 4Gi requests: cpu: 500m memory: 512Mi volumes: - name: loadtest configMap: name: jmeter-load-test
jmeter_influxdb_configmap.yaml(influxdb 的應用配置):
apiVersion: v1 kind: ConfigMap metadata: name: influxdb-config labels: app: influxdb-jmeter data: influxdb.conf: | [meta] dir = "/var/lib/influxdb/meta" [data] dir = "/var/lib/influxdb/data" engine = "tsm1" wal-dir = "/var/lib/influxdb/wal" # Configure the graphite api [[graphite]] enabled = true bind-address = ":2003" # If not set, is actually set to bind-address. database = "jmeter" # store graphite data in this database
jmeter_influxdb_deploy.yaml(influxdb 部署清單):
apiVersion: apps/v1 kind: Deployment metadata: name: influxdb-jmeter labels: app: influxdb-jmeter spec: replicas: 1 selector: matchLabels: app: influxdb-jmeter template: metadata: labels: app: influxdb-jmeter spec: containers: - image: influxdb imagePullPolicy: IfNotPresent name: influxdb volumeMounts: - name: config-volume mountPath: /etc/influxdb ports: - containerPort: 8083 name: influx - containerPort: 8086 name: api - containerPort: 2003 name: graphite volumes: - name: config-volume configMap: name: influxdb-config
jmeter_influxdb_svc.yaml(influxdb 部署服務清單):
apiVersion: v1 kind: Service metadata: name: jmeter-influxdb labels: app: influxdb-jmeter spec: ports: - port: 8083 name: http targetPort: 8083 - port: 8086 name: api targetPort: 8086 - port: 2003 name: graphite targetPort: 2003 selector: app: influxdb-jmeter
jmeter_grafana_deploy.yaml(grafana 部署清單):
apiVersion: apps/v1 kind: Deployment metadata: name: jmeter-grafana labels: app: jmeter-grafana spec: replicas: 1 selector: matchLabels: app: jmeter-grafana template: metadata: labels: app: jmeter-grafana spec: containers: - name: grafana image: grafana/grafana:5.2.0 imagePullPolicy: IfNotPresent ports: - containerPort: 3000 protocol: TCP env: - name: GF_AUTH_BASIC_ENABLED value: "true" - name: GF_USERS_ALLOW_ORG_CREATE value: "true" - name: GF_AUTH_ANONYMOUS_ENABLED value: "true" - name: GF_AUTH_ANONYMOUS_ORG_ROLE value: Admin - name: GF_SERVER_ROOT_URL # If you're only using the API Server proxy, set this value instead: # value: /api/v1/namespaces/kube-system/services/monitoring-grafana/proxy value: /
jmeter_grafana_svc.yaml(grafana 部署服務清單):
apiVersion: v1 kind: Service metadata: name: jmeter-grafana labels: app: jmeter-grafana spec: ports: - port: 3000 targetPort: 3000 selector: app: jmeter-grafana type: NodePort --- apiVersion: extensions/v1beta1 kind: Ingress metadata: annotations: nginx.ingress.kubernetes.io/service-weight: 'jmeter-grafana: 100' name: jmeter-grafana-ingress spec: rules: # 配置七層域名 - host: grafana-jmeter.7d.com http: paths: # 配置Context Path - path: / backend: serviceName: jmeter-grafana servicePort: 3000
初始化 dashboard
啟動 dashboard 腳本
$ ./dashboard.sh
檢查 service 部署情況:
$ kubectl get svc -n 7dgroup NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE jmeter-grafana NodePort 10.96.6.201
我們可以通過 http://任意 node_ip:31801/ 訪問 grafana
最后,我們在 grafana 導入 dashborad 模版:
如果你不喜歡這個模版,也可以導入熱門模版:5496
部署清單
dashboard.sh 該腳本用于自動創建以下內容:
(1)influxdb pod 中的一個 influxdb 數據庫(Jmeter)
(2)grafana 中的數據源(jmeterdb)
#!/usr/bin/env bash working_dir=`pwd` #Get namesapce variable tenant=`awk '{print $NF}' $working_dir/tenant_export` ## Create jmeter database automatically in Influxdb echo "Creating Influxdb jmeter Database" ##Wait until Influxdb Deployment is up and running ##influxdb_status=`kubectl get po -n $tenant | grep influxdb-jmeter | awk '{print $2}' | grep Running influxdb_pod=`kubectl get po -n $tenant | grep influxdb-jmeter | awk '{print $1}'` kubectl exec -ti -n $tenant $influxdb_pod -- influx -execute 'CREATE DATABASE jmeter' ## Create the influxdb datasource in Grafana echo "Creating the Influxdb data source" grafana_pod=`kubectl get po -n $tenant | grep jmeter-grafana | awk '{print $1}'` ## Make load test script in Jmeter master pod executable #Get Master pod details master_pod=`kubectl get po -n $tenant | grep jmeter-master | awk '{print $1}'` kubectl exec -ti -n $tenant $master_pod -- cp -r /load_test /![]()jmeter/load_test kubectl exec -ti -n $tenant $master_pod -- chmod 755 /jmeter/load_test ##kubectl cp $working_dir/influxdb-jmeter-datasource.json -n $tenant $grafana_pod:/influxdb-jmeter-datasource.json kubectl exec -ti -n $tenant $grafana_pod -- curl 'http://admin:admin@127.0.0.1:3000/api/datasources' -X POST -H 'Content-Type: application/json;charset=UTF-8' --data-binary '{"name":"jmeterdb","type":"influxdb","url":"http://jmeter-influxdb:8086","access":"proxy","isDefault":true,"database":"jmeter","user":"admin","password":"admin"}'
啟動測試
執行腳本
$ ./start_test.sh
需要一個測試腳本,本例為:web-test.jmx
$ ./start_test.sh Enter path to the jmx file web-test.jmx ''SLF4J: Class path contains multiple SLF4J bindings. SLF4J: Found binding in [jar:file:/jmeter/apache-jmeter-5.0/lib/log4j-slf4j-impl-2.11.0.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: Found binding in [jar:file:/jmeter/apache-jmeter-5.0/lib/ext/pepper-box-1.0.jar!/org/slf4j/impl/StaticLoggerBinder.class] SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation. SLF4J: Actual binding is of type [org.apache.logging.slf4j.Log4jLoggerFactory] Jul 25, 2020 11:30:58 AM java.util.prefs.FileSystemPreferences$1 run INFO: Created user preferences directory. Creating summariser
查看測試數據:
部署清單
start_test.sh(此腳本用于自動運行 Jmeter 測試腳本,而無需手動登錄 Jmeter 主 shell,它將詢問 Jmeter 測試腳本的位置,然后將其復制到 Jmeter master pod 并啟動自動對 Jmeter slave 進行測試):
#!/usr/bin/env bash #Script created to launch Jmeter tests directly from the current terminal without accessing the jmeter master pod. #It requires that you supply the path to the jmx file #After execution, test script jmx file may be deleted from the pod itself but not locally. #直接從當前終端啟動 Jmeter 測試而創建的腳本,無需訪問 Jmeter master pod。 #要求提供 jmx 文件的路徑 #執行后,測試腳本 jmx 文件可能會從 pod 本身刪除,但不會在本地刪除。 working_dir="`pwd`" # 獲取 namesapce 變量 tenant=`awk '{print $NF}' "$working_dir/tenant_export"` jmx="$1" [ -n "$jmx" ] || read -p 'Enter path to the jmx file ' jmx if [ ! -f "$jmx" ]; then echo "Test script file was not found in PATH" echo "Kindly check and input the correct file path" exit fi test_name="$(basename "$jmx")" # 獲取 master pod 詳細信息 master_pod=`kubectl get po -n $tenant | grep jmeter-master | awk '{print $1}'` kubectl cp "$jmx" -n $tenant "$master_pod:/$test_name" ## 啟動 Jmeter 壓測 kubectl exec -ti -n $tenant $master_pod -- /bin/bash /load_test "$test_name" kubectl exec -ti -n $tenant $master_pod -- /bin/bash /load_test "$test_name"
jmeter_stop.sh(停止測試):
#!/usr/bin/env bash #Script writtent to stop a running jmeter master test #Kindly ensure you have the necessary kubeconfig #編寫腳本來停止運行的 jmeter master 測試 #請確保你有必要的 kubeconfig working_dir=`pwd` #獲取 namesapce 變量 tenant=`awk '{print $NF}' $working_dir/tenant_export` master_pod=`kubectl get po -n $tenant | grep jmeter-master | awk '{print $1}'` kubectl -n $tenant exec -it $master_pod -- bash -c "./jmeter/apache-jmeter-5.0/bin/stoptest.sh"
小結
傳統 Jmeter 存在的問題:
并發數超過單節點承載能力時,多節點環境配置、維護復雜;
默認配置下無法并行運行多個測試,需要更改配置啟動額外進程;
難以支持云環境下測試資源的彈性伸縮需求。
Kubernetes-Jmeter 帶來的改變:
壓測執行節點一鍵安裝;
多個項目、多個測試可并行使用同一個測試資源池(最大并發數允許情況下, Kubernetes 也提供了 RBAC、namespace 等管理能力,支持多用戶共享一個集群,并實現資源限制),提高資源利用率;
對接 Kubernetes HPA 根據并發數自動啟動、釋放壓測執行節點。
源碼地址:
https://github.com/zuozewei/blog-example/tree/master/Kubernetes/k8s-jmeter-cluster
參考資料:
[1]:https://github.com/kubernauts/jmeter-kubernetes
Docker Kubernetes 壓力測試 容器
版權聲明:本文內容由網絡用戶投稿,版權歸原作者所有,本站不擁有其著作權,亦不承擔相應法律責任。如果您發現本站中有涉嫌抄襲或描述失實的內容,請聯系我們jiasou666@gmail.com 處理,核實后本網站將在24小時內刪除侵權內容。