實戰(zhàn)分布式系統(tǒng) - python實現(xiàn)Multi-Paxos - 1

      網(wǎng)友投稿 816 2022-05-30

      基于500lineofcode的cluster項目

      一致性算法背景:Paxos

      一致性算法解決的問題:分布式系統(tǒng)中數(shù)據(jù)不能存在單個節(jié)點(主機)上,否則可能出現(xiàn)單點故障;多個節(jié)點(主機)需要保證具有相同的數(shù)據(jù)。

      什么是一致性:一致性就是數(shù)據(jù)保持一致,在分布式系統(tǒng)中,可以理解為多個節(jié)點中數(shù)據(jù)的值是一致的。

      一致性模型分類:一般分為強一致性和弱一致性,強一致性保證系統(tǒng)改變提交以后立即改變集群的狀態(tài)。常見模型包括:Paxos,Raft(muti-paxos),ZAB(muti-paxos); 弱一致性也叫最終一致性,系統(tǒng)不保證改變提交以后立即改變集群的狀態(tài),但是隨著時間的推移最終狀態(tài)一致的。常見模型包括:DNS系統(tǒng),Gossip協(xié)議

      一致性算法使用案例: Google的Chubby分布式鎖服務(wù),采用了Paxos算法;etcd分布式鍵值數(shù)據(jù)庫,采用了Raft算法;ZooKeeper分布式應(yīng)用協(xié)調(diào)服務(wù)以及Chubby的開源實現(xiàn),采用ZAB算法

      simple-paxos就單個靜態(tài)值達一致性本身并不實用,我們需要實現(xiàn)的集群系統(tǒng)(銀行賬戶服務(wù))希望就隨時間變化的特定狀態(tài)(賬戶余額)達成一致。所以需要使用Paxos就每個操作達成一致,將每個修改視為狀態(tài)機轉(zhuǎn)換。

      實戰(zhàn)分布式系統(tǒng) - python實現(xiàn)Multi-Paxos - 1

      Multi-Paxos實際上是simple Paxos實例(插槽)的序列,每個實例都按順序編號。每個狀態(tài)轉(zhuǎn)換都被賦予一個“插槽編號”,集群的每個成員都以嚴格的數(shù)字順序執(zhí)行轉(zhuǎn)換。為了更改群集的狀態(tài)(例如,處理傳輸操作),我們嘗試在下一個插槽中就該操作達成一致性。具體來說,這意味著向每個消息添加一個插槽編號,并在每個插槽的基礎(chǔ)上跟蹤所有協(xié)議狀態(tài)。

      為每個插槽運行Paxos,至少兩次往返會太慢。Multi-Paxos通過對所有插槽使用相同的選票編號集進行優(yōu)化,并同時對所有插槽執(zhí)行Prepare/Promise。

      Client Proposer Acceptor Learner | | | | | | | --- First Request --- X-------->| | | | | | Request | X--------->|->|->| | | Prepare(N) | |<---------X--X--X | | Promise(N,I,{Va,Vb,Vc}) | X--------->|->|->| | | Accept!(N,I,V) | |<---------X--X--X------>|->| Accepted(N,I,V) |<---------------------------------X--X Response | | | | | | |

      Paxos實現(xiàn)

      在實用軟件中實現(xiàn)Multi-Paxos是出了名的困難,催生了許多論文如"Paxos Made Simple",“Paxos Made Practical”

      首先,multi-poposer在繁忙的環(huán)境中可能會成為問題,因為每個群集成員都試圖在每個插槽中決定其狀態(tài)機操作。解決方法是選舉一名“l(fā)eader”,負責(zé)為每個時段提交選票。所有其他群集節(jié)點將新操作發(fā)送到領(lǐng)導(dǎo)者執(zhí)行。因此,在只有一名領(lǐng)導(dǎo)人的正常運作中,不會發(fā)生投票沖突。

      Prepare/Promise階段可以作為一種leader選舉:無論哪個集群成員擁有最近承諾的選票號碼,都被視為leader。leader后續(xù)可以自由地直接執(zhí)行Accept/Accepted階段,而不重復(fù)第一階段。我們將在下文看到的,leader選舉實際上是相當(dāng)復(fù)雜的。

      雖然simple Paxos保證集群不會達成沖突的決定,但它不能保證會做出任何決定。例如,如果初始的Prepare消息丟失,并且沒有到達接受者,則提議者將等待永遠不會到達的Promise消息。解決這個問題需要精心設(shè)計的重新傳輸:足以最終取得進展,但不會群集產(chǎn)生數(shù)據(jù)包風(fēng)暴。

      另一個問題是決定的傳播。在正常情況下,簡單地廣播Decision信息就可以解決這個問題。但是,如果消息丟失,節(jié)點可能會永遠不知道該決定,并且無法為以后的插槽應(yīng)用狀態(tài)機轉(zhuǎn)換。所以實現(xiàn)需要一些機制來共享有關(guān)已決定提案的信息。

      使用分布式狀態(tài)機帶來了另一個挑戰(zhàn):當(dāng)新節(jié)點啟動時,它需要獲取群集的現(xiàn)有狀態(tài)。

      雖然可以通過趕上第一個插槽以來的所有插槽的決策來做到這一點,但在一個大的集群中,這可能涉及數(shù)百萬個插槽。此外,我們需要一些方法來初始化一個新的群集。

      集群庫介紹

      前面都是理論介紹,下面我們使用python來實現(xiàn)一個簡化的Multi-Paxos

      業(yè)務(wù)場景和痛點

      我們以簡單的銀行賬戶管理服務(wù)的場景作為案例。在這個服務(wù)中,每一個賬戶都有一個當(dāng)前余額,同時每個賬戶都有自己的賬號。用戶可以對賬戶進行“存款”、“轉(zhuǎn)賬”、“查詢當(dāng)前余額”等操作。“轉(zhuǎn)賬”操作同時涉及了兩個賬戶:轉(zhuǎn)出賬戶和轉(zhuǎn)入賬戶,如果賬戶余額不足,轉(zhuǎn)賬操作必須被駁回。

      如果這個服務(wù)僅僅在一個服務(wù)器上部署,很容易就能夠?qū)崿F(xiàn):使用一個操作鎖來確保“轉(zhuǎn)賬”操作不會同時進行,同時對轉(zhuǎn)出賬戶的進行校驗。然而,銀行不可能僅僅依賴于一個服務(wù)器來儲存賬戶余額這樣的關(guān)鍵信息,通常,這些服務(wù)都是被分布在多個服務(wù)器上的,每一個服務(wù)器各自運行著相同代碼的實例。用戶可以通過任何一個服務(wù)器來操作賬戶。

      在一個簡單的分布式處理系統(tǒng)的實現(xiàn)中,每個服務(wù)器都會保存一份賬戶余額的副本。它會處理任何收到的操作,并且將賬戶余額的更新發(fā)送給其他的服務(wù)器。但是這種方法有一個嚴重的問題:如果兩個服務(wù)器同時對一個賬戶進行操作,哪一個新的賬戶余額是正確的?即使服務(wù)器不共享余額而是共享操作,對一個賬戶同時進行轉(zhuǎn)賬操作也可能造成透支。

      從根本上來說,這些錯誤的發(fā)生都是由于服務(wù)器使用它們本地狀態(tài)來響應(yīng)操作,而不是首先確保本地狀態(tài)與其他服務(wù)器相匹配。比如,想象服務(wù)器A接到了從賬號101向賬號202轉(zhuǎn)賬的操作指令,而此時服務(wù)器B已經(jīng)處理了另一個把賬號101的錢都轉(zhuǎn)到賬號202的請求,卻沒有通知服務(wù)器A。這樣,服務(wù)器A的本地狀態(tài)與服務(wù)器B不一樣,即使會造成賬戶101透支,服務(wù)器A依然允許從賬號101進行轉(zhuǎn)賬操作。

      分布式狀態(tài)機

      為了防止上述情況發(fā)生我們采用了一種叫做“分布式狀態(tài)機”的工具。它的思路是對每個同樣的輸入,每個服務(wù)器都運行同樣的對應(yīng)的狀態(tài)機。由于狀態(tài)機的特性,對于同樣的輸入每個服務(wù)器的輸出都是一樣的。對于像“轉(zhuǎn)賬”、“查詢當(dāng)前余額”等操作,賬號和余額也都是狀態(tài)機的輸入。

      這個應(yīng)用的狀態(tài)機比較簡單:

      def execute_operation(state, operation): if operation.name == 'deposit': if not verify_signature(operation.deposit_signature): return state, False state.accounts[operation.destination_account] += operation.amount return state, True elif operation.name == 'transfer': if state.accounts[operation.source_account] < operation.amount: return state, False state.accounts[operation.source_account] -= operation.amount state.accounts[operation.destination_account] += operation.amount return state, True elif operation.name == 'get-balance': return state, state.accounts[operation.account]

      值得注意的是,運行“查詢當(dāng)前余額”操作時雖然并不會改變當(dāng)前狀態(tài),但是我們依然把它當(dāng)做一個狀態(tài)變化操作來實現(xiàn)。這確保了返回的余額是分布式系統(tǒng)中的最新信息,并且不是基于一個服務(wù)器上的本地狀態(tài)來進行返回的。

      這可能跟你在計算機課程中學(xué)習(xí)到的典型的狀態(tài)機不太一樣。傳統(tǒng)的狀態(tài)機是一系列有限個狀態(tài)的集合,每個狀態(tài)都與一個標(biāo)記的轉(zhuǎn)移行為相對應(yīng),而在本文中,狀態(tài)機的狀態(tài)是賬戶余額的集合,因此存在無窮多個可能的狀態(tài)。但是,狀態(tài)機的基本規(guī)則同樣適用于本文的狀態(tài)機:對于同樣的初始狀態(tài),同樣的輸入總是有同樣的輸出。

      因此,分布式狀態(tài)機確保了對于同樣的操作,每個主機都會有同樣的相應(yīng)。但是,為了確保每個服務(wù)器都允許狀態(tài)機的輸入,前文中提到的問題依然存在。這是一個一致性問題,為了解決它我們采用了一種派生的Paxos算法。

      核心需求

      可以為較大的應(yīng)用程序提供一致性服務(wù): 我們用一個Cluster庫來實現(xiàn)簡化的Multi-Paxos

      正確性是這個庫最重要的能力,因此結(jié)構(gòu)化代碼是很重要的,以便我們可以看到并測試它與規(guī)范的對應(yīng)關(guān)系。

      復(fù)雜的協(xié)議可能會出現(xiàn)復(fù)雜的故障,因此我們將構(gòu)建對復(fù)現(xiàn)和調(diào)試不常見的故障的支持。

      我們會實現(xiàn)POC代碼:足以證明核心概念是實用的,代碼的結(jié)構(gòu)化是為了后續(xù)添加此功能對核心實現(xiàn)的更改最小

      我們開始coding吧。

      類型和常量

      cluster中的協(xié)議需要使用15不同的消息類型,每種消息類型使用collection中的namedturple定義:

      Accepted = namedtuple('Accepted', ['slot', 'ballot_num']) Accept = namedtuple('Accept', ['slot', 'ballot_num', 'proposal']) Decision = namedtuple('Decision', ['slot', 'proposal']) Invoked = namedtuple('Invoked', ['client_id', 'output']) Invoke = namedtuple('Invoke', ['caller', 'client_id', 'input_value']) Join = namedtuple('Join', []) Active = namedtuple('Active', []) Prepare = namedtuple('Prepare', ['ballot_num']) Promise = namedtuple('Promise', ['ballot_num', 'accepted_proposals']) Propose = namedtuple('Propose', ['slot', 'proposal']) Welcome = namedtuple('Welcome', ['state', 'slot', 'decisions']) Decided = namedtuple('Decided', ['slot']) Preempted = namedtuple('Preempted', ['slot', 'preempted_by']) Adopted = namedtuple('Adopted', ['ballot_num', 'accepted_proposals']) Accepting = namedtuple('Accepting', ['leader'])

      使用命名元組描述每種消息類型可以保持代碼的clean,并有助于避免一些簡單的錯誤。如果命名元組構(gòu)造函數(shù)沒有被賦予正確的屬性,則它將引發(fā)異常,從而使錯誤變得明顯。元組在日志消息中k可以很好地格式化,不會像字典那樣使用那么多的內(nèi)存。

      創(chuàng)建消息:

      msg = Accepted(slot=10, ballot_num=30)

      訪問消息:

      got_ballot_num = msg.ballot_num

      后面我們會了解這些消息的含義。

      代碼還引入了一些常量,其中大多數(shù)常量定義了各種消息的超時:

      JOIN_RETRANSMIT = 0.7 CATCHUP_INTERVAL = 0.6 ACCEPT_RETRANSMIT = 1.0 PREPARE_RETRANSMIT = 1.0 INVOKE_RETRANSMIT = 0.5 LEADER_TIMEOUT = 1.0 NULL_BALLOT = Ballot(-1, -1) # sorts before all real ballots NOOP_PROPOSAL = Proposal(None, None, None) # no-op to fill otherwise empty slots

      最后我們需要定義協(xié)議中的Proposal和Ballot

      Proposal = namedtuple('Proposal', ['caller', 'client_id', 'input']) Ballot = namedtuple('Ballot', ['n', 'leader'])

      組件模型

      實現(xiàn)multi-paxos的核心組件包括Role和Node。

      為了保證可測試性并保持代碼的可讀性,我們將Cluster分解為與協(xié)議中描述的角色相對應(yīng)的幾個類。每個都是Role的子類。

      class Role(object): def __init__(self, node): self.node = node self.node.register(self) self.running = True self.logger = node.logger.getChild(type(self).__name__) def set_timer(self, seconds, callback): return self.node.network.set_timer(self.node.address, seconds, lambda: self.running and callback()) def stop(self): self.running = False self.node.unregister(self)

      群集節(jié)點的角色由Node類粘在一起,該類代表網(wǎng)絡(luò)上的單個節(jié)點。在程序過程中角色將添加到節(jié)點中,并從節(jié)點中刪除。

      到達節(jié)點的消息將中繼到所有活動角色,調(diào)用以消息類型命名的方法,前綴為do_。 這些do_方法接收消息的屬性作為關(guān)鍵字參數(shù),以便于訪問。Node``類還提供了``send方法作為方便,使用functools.partial為Network類的相同方法提供一些參數(shù)。

      class Node(object): unique_ids = itertools.count() def __init__(self, network, address): self.network = network self.address = address or 'N%d' % self.unique_ids.next() self.logger = SimTimeLogger( logging.getLogger(self.address), {'network': self.network}) self.logger.info('starting') self.roles = [] self.send = functools.partial(self.network.send, self) def register(self, roles): self.roles.append(roles) def unregister(self, roles): self.roles.remove(roles) def receive(self, sender, message): handler_name = 'do_%s' % type(message).__name__ for comp in self.roles[:]: if not hasattr(comp, handler_name): continue comp.logger.debug("received %s from %s", message, sender) fn = getattr(comp, handler_name) fn(sender=sender, **message._asdict())

      應(yīng)用接口

      每個集群成員上都會創(chuàng)建并啟動一個Member對象,提供特定于應(yīng)用程序的狀態(tài)機和對等項列表。如果成員對象正在加入現(xiàn)有集群,則該成員對象向該節(jié)點添加bootstrap角色,如果正在創(chuàng)建新集群,則該成員對象添加seed。再用Network.run在單獨的線程中運行協(xié)議。

      應(yīng)用程序通過該invoke方法與集群進行交互,從而啟動了狀態(tài)轉(zhuǎn)換, 確定該提議并運行狀態(tài)機后,invoke將返回狀態(tài)機的輸出。該方法使用簡單的同步Queue來等待協(xié)議線程的結(jié)果。

      class Member(object): def __init__(self, state_machine, network, peers, seed=None, seed_cls=Seed, bootstrap_cls=Bootstrap): self.network = network self.node = network.new_node() if seed is not None: self.startup_role = seed_cls(self.node, initial_state=seed, peers=peers, execute_fn=state_machine) else: self.startup_role = bootstrap_cls(self.node, execute_fn=state_machine, peers=peers) self.requester = None def start(self): self.startup_role.start() self.thread = threading.Thread(target=self.network.run) self.thread.start() def invoke(self, input_value, request_cls=Requester): assert self.requester is None q = Queue.Queue() self.requester = request_cls(self.node, input_value, q.put) self.requester.start() output = q.get() self.requester = None return output

      Role 類

      Paxos協(xié)議中的角色包括:client, acceptor, proposer, learner, and leader。在典型的實現(xiàn)中,單個processor可以同時扮演一個或多個角色。這不會影響協(xié)議的正確性,通常會合并角色以改善協(xié)議中的延遲和/或消息數(shù)量。

      Role的設(shè)計包括以下子類:

      Acceptor – promises 并且接受 proposals

      Replica – 管理分布式狀態(tài)機: 提交 proposals, 提交 decisions, 響應(yīng)requesters

      Leader – lead rounds of the Multi-Paxos 算法

      Scout – 為multi-Paxos中的leader執(zhí)行 Prepare/Promise兩部分

      Commander – 為multi-Paxos中的leader執(zhí)行 Accept/Accepted 兩部分

      Bootstrap – 為集群添加新節(jié)點

      Seed – 創(chuàng)建一個新的集群

      Requester – 請求分布式狀態(tài)機操作

      下面逐一實現(xiàn)每個角色類

      下面逐一實現(xiàn)每個角色類

      Acceptor 類實現(xiàn)的是Paxos中的 acceptor角色,所以必須存儲最近promise的選票編號,以及每個時段接受的各個slot的proposal,同時需要相應(yīng)Prepare和Accept消息。 這里的POC實現(xiàn)是一個和協(xié)議可以直接對應(yīng)的短類,對于acceptor來說Multi-paxos看起來像是簡單的Paxos,只是在message中添加了slot number。

      class Acceptor(Role): def __init__(self, node): super(Acceptor, self).__init__(node) self.ballot_num = NULL_BALLOT self.accepted_proposals = {} # {slot: (ballot_num, proposal)} def do_Prepare(self, sender, ballot_num): if ballot_num > self.ballot_num: self.ballot_num = ballot_num # we've heard from a scout, so it might be the next leader self.node.send([self.node.address], Accepting(leader=sender)) self.node.send([sender], Promise( ballot_num=self.ballot_num, accepted_proposals=self.accepted_proposals )) def do_Accept(self, sender, ballot_num, slot, proposal): if ballot_num >= self.ballot_num: self.ballot_num = ballot_num acc = self.accepted_proposals if slot not in acc or acc[slot][0] < ballot_num: acc[slot] = (ballot_num, proposal) self.node.send([sender], Accepted( slot=slot, ballot_num=self.ballot_num))

      Replica類是Role類最復(fù)雜的子類,對應(yīng)協(xié)議中的Learner和Proposal角色,它的主要職責(zé)是:提出新的proposal;在決定proposal時調(diào)用本地狀態(tài)機;跟蹤當(dāng)前Leader;以及將新啟動的節(jié)點添加到集群中。

      Replica創(chuàng)建新的proposal以響應(yīng)來自客戶端的“invoke”消息,選擇它認為是未使用的插槽,并向當(dāng)前l(fā)eader發(fā)送“Propose”消息。如果選定插槽的共識是針對不同proposal,則replica必須使用新插槽re-propose。

      下圖顯示Replica的角色控制流程:

      Requester Local Rep Current Leader X---------->| | Invoke | X------------>| Propose | |<------------X Decision |<----------X | Decision | | |

      Decision消息表示集群已達成共識的插槽, Replica類存儲新的決定并運行狀態(tài)機,直到到達未確定的插槽。Replica從本地狀態(tài)機已處理的提交的slot識別出集群已同意的已決定的slot。如果slot出現(xiàn)亂序,提交的提案可能會滯后,等待下一個空位被決定。提交slot后,每個replica會將操作結(jié)果發(fā)送回一條Invoked消息給請求者。

      在某些情況下slot可能沒有有效的提案,也沒有決策,需要狀態(tài)機一個接一個地執(zhí)行slot,因此群集必須就填充slot的內(nèi)容達成共識。為了避免這種可能性,Replica在遇到插槽時會提出“no-op”的proposal。如果最終決定了這樣的proposal,則狀態(tài)機對該slot不執(zhí)行任何操作。

      同樣,同一proposal有可能被Decision兩次。對于任何此類重復(fù)的proposal,Replica將跳過調(diào)用狀態(tài)機,而不會對該slot執(zhí)行任何狀態(tài)轉(zhuǎn)換。

      Replicas需要知道哪個節(jié)點是active leader才能向其發(fā)送Propose消息, 要實現(xiàn)這一目標(biāo),每個副本都使用三個信息源跟蹤active leader。

      當(dāng)leader 的角色轉(zhuǎn)換為active時,它會向同一節(jié)點上的副本發(fā)送一條Adopted消息(下圖):

      Leader Local Repplica X----------->| Admopted

      當(dāng)acceptor角色向Promise新的leader發(fā)送Accepting消息時,它將消息發(fā)送到其本地副本(下圖)。

      Acceptor Local Repplica X----------->| Accepting

      active leader將以心跳的形式發(fā)送Active消息。如果在LEADER_TIMEOUT到期之前沒有此類消息到達,則Replica將假定該Leader已死,并轉(zhuǎn)向下一個Leader。在這種情況下,重要的是所有副本都選擇相同的新領(lǐng)導(dǎo)者,我們可以通過對成員進行排序并在列表中選擇下一個leader。

      當(dāng)節(jié)點加入網(wǎng)絡(luò)時,Bootstrap將發(fā)送一條Join消息(下圖)。Replica以一條Welcome包含其最新狀態(tài)的消息作為響應(yīng),從而使新節(jié)點能夠快速啟用。

      BootStrap Replica Replica Replica X---------->| | | Join |<----------X X | Welcome X------------------------>| | Join |<------------------------X | Welcome X-------------------------------------->| Join |<--------------------------------------X Welcome

      class Replica(Role): def __init__(self, node, execute_fn, state, slot, decisions, peers): super(Replica, self).__init__(node) self.execute_fn = execute_fn self.state = state self.slot = slot self.decisions = decisions self.peers = peers self.proposals = {} # next slot num for a proposal (may lead slot) self.next_slot = slot self.latest_leader = None self.latest_leader_timeout = None # making proposals def do_Invoke(self, sender, caller, client_id, input_value): proposal = Proposal(caller, client_id, input_value) slot = next((s for s, p in self.proposals.iteritems() if p == proposal), None) # propose, or re-propose if this proposal already has a slot self.propose(proposal, slot) def propose(self, proposal, slot=None): """Send (or resend, if slot is specified) a proposal to the leader""" if not slot: slot, self.next_slot = self.next_slot, self.next_slot + 1 self.proposals[slot] = proposal # find a leader we think is working - either the latest we know of, or # ourselves (which may trigger a scout to make us the leader) leader = self.latest_leader or self.node.address self.logger.info( "proposing %s at slot %d to leader %s" % (proposal, slot, leader)) self.node.send([leader], Propose(slot=slot, proposal=proposal)) # handling decided proposals def do_Decision(self, sender, slot, proposal): assert not self.decisions.get(self.slot, None), \ "next slot to commit is already decided" if slot in self.decisions: assert self.decisions[slot] == proposal, \ "slot %d already decided with %r!" % (slot, self.decisions[slot]) return self.decisions[slot] = proposal self.next_slot = max(self.next_slot, slot + 1) # re-propose our proposal in a new slot if it lost its slot and wasn't a no-op our_proposal = self.proposals.get(slot) if (our_proposal is not None and our_proposal != proposal and our_proposal.caller): self.propose(our_proposal) # execute any pending, decided proposals while True: commit_proposal = self.decisions.get(self.slot) if not commit_proposal: break # not decided yet commit_slot, self.slot = self.slot, self.slot + 1 self.commit(commit_slot, commit_proposal) def commit(self, slot, proposal): """Actually commit a proposal that is decided and in sequence""" decided_proposals = [p for s, p in self.decisions.iteritems() if s < slot] if proposal in decided_proposals: self.logger.info( "not committing duplicate proposal %r, slot %d", proposal, slot) return # duplicate self.logger.info("committing %r at slot %d" % (proposal, slot)) if proposal.caller is not None: # perform a client operation self.state, output = self.execute_fn(self.state, proposal.input) self.node.send([proposal.caller], Invoked(client_id=proposal.client_id, output=output)) # tracking the leader def do_Adopted(self, sender, ballot_num, accepted_proposals): self.latest_leader = self.node.address self.leader_alive() def do_Accepting(self, sender, leader): self.latest_leader = leader self.leader_alive() def do_Active(self, sender): if sender != self.latest_leader: return self.leader_alive() def leader_alive(self): if self.latest_leader_timeout: self.latest_leader_timeout.cancel() def reset_leader(): idx = self.peers.index(self.latest_leader) self.latest_leader = self.peers[(idx + 1) % len(self.peers)] self.logger.debug("leader timed out; tring the next one, %s", self.latest_leader) self.latest_leader_timeout = self.set_timer(LEADER_TIMEOUT, reset_leader) # adding new cluster members def do_Join(self, sender): if sender in self.peers: self.node.send([sender], Welcome( state=self.state, slot=self.slot, decisions=self.decisions))

      參考:

      http://aosabook.org/en/500L/clustering-by-consensus.html

      https://lamport.azurewebsites.net/pubs/lamport-paxos.pdf

      https://lamport.azurewebsites.net/pubs/paxos-simple.pdf

      https://www.scs.stanford.edu/~dm/home/papers/paxos.pdf

      https://www.researchgate.net/publication/221234235_Revisiting_the_Paxos_Algorithm

      https://www.paxos.com/

      https://www.cs.cornell.edu/courses/cs6410/2017fa/slides/20-p2p-gossip.pdf

      https://en.wikipedia.org/wiki/Paxos_(computer_science)

      https://ongardie.net/static/raft/userstudy/quizzes.html

      https://zhuanlan.zhihu.com/p/130332285

      Python 分布式

      版權(quán)聲明:本文內(nèi)容由網(wǎng)絡(luò)用戶投稿,版權(quán)歸原作者所有,本站不擁有其著作權(quán),亦不承擔(dān)相應(yīng)法律責(zé)任。如果您發(fā)現(xiàn)本站中有涉嫌抄襲或描述失實的內(nèi)容,請聯(lián)系我們jiasou666@gmail.com 處理,核實后本網(wǎng)站將在24小時內(nèi)刪除侵權(quán)內(nèi)容。

      上一篇:Google Earth Engine(GEE)——調(diào)試(語法和客戶端)錯誤指南!
      下一篇:Java中容易混淆的基礎(chǔ)知識
      相關(guān)文章
      亚洲免费视频一区二区三区| 亚洲国产精品高清久久久| 亚洲精品国产成人专区| 久久亚洲AV无码西西人体| 国产精品亚洲产品一区二区三区| 亚洲AV无码之日韩精品| 亚洲AV无码无限在线观看不卡| 亚洲国产二区三区久久| 亚洲爆乳精品无码一区二区三区| 最新国产AV无码专区亚洲| 亚洲自偷自偷图片| 亚洲人成网站在线观看播放| 中文字幕亚洲激情| 国产精品亚洲αv天堂无码| 亚洲日韩精品无码专区网站| 国产成人va亚洲电影| 亚洲国产香蕉人人爽成AV片久久| 午夜在线亚洲男人午在线| 亚洲精品乱码久久久久久蜜桃| 亚洲中文字幕丝袜制服一区| 国产亚洲精品成人AA片新蒲金| 亚洲人成网77777色在线播放| 亚洲第一极品精品无码久久| 久久亚洲AV午夜福利精品一区| 亚洲人成在线电影| 亚洲电影在线免费观看| 亚洲av无码电影网| 亚洲国产91在线| 亚洲av成人中文无码专区| 亚洲电影日韩精品| 夜夜春亚洲嫩草影院| 亚洲av无码片在线播放| 久久精品亚洲视频| 亚洲视频日韩视频| 亚洲国产综合精品中文第一| 国产精品亚洲精品久久精品| 国产成人亚洲综合无码| 久久青青成人亚洲精品| 亚洲宅男天堂a在线| 亚洲成AV人片高潮喷水| 亚洲人成无码网站久久99热国产|