數據應該從制造業中來 也應該回到制造業中去

      網友投稿 589 2025-03-31

      數據應該從制造業中來 也應該回到制造業中去

      文:中國工程院院士楊華勇

      所以,在浙大,流程工業比較多的是控制學院,是孫院士帶領的團隊,我們主要是做離散工業。我們都在講產業的升級和產品的升級。

      我們都知道互聯網把全球的消費者連接在一起,互聯網倒逼服務,在互聯網經濟、數字經濟下都講究用戶體驗,這就倒逼服務升級,服務升級倒逼制造升級,所以整個供應鏈都在講智能化的問題。

      工業互聯網架構

      現在總是說工業互聯網,互聯網的數據市場從全球看主要是三大市場,領先的是美國,歐洲是德國。亞太是中國,目前預測都慢于實際,之后增長速度非???。

      具體來看這個數據市場主要是在這一塊,最大的還是設備管理。產品的售后服務占了38%,還有生產過程中的管控,包括監控、能耗、質量管理,整個生產過程的優化占了28%,企業的運營管理占了28%,運營管理是18%,資源配置13%。

      我們說的很多產品設計和工藝管理,事實上大部分是秘密,不在數據市場中。

      目前需求很大,需要做的就是數據建模、數據分析,就是設備的健康管理、產品的售后服務、生產的管理優化、能耗與質量管理,還有客戶關系管理、財務、生產過程監控與安全管理。

      總得來說,工業行業有49個,小的行業有400多個,實際上每個行業的龍頭企業需求、專精企業的需求和中小企業的需求完全不一樣,這就需要做很多事。

      從數據管理的角度來看,它需要把整個產業鏈從供應商和物流把人、財、物全部管理起來,現在用戶的體驗、運行也需要管理。

      具體到企業內部就是物料、工裝、人員、設備、供應、訂單、供應商的管理。

      而平臺一旦打造起來,它是大數據的多元融合,計算的應用、可視以及業務的智能,需要整合各種數據,最主要的目的是產品質量溯源,現在要高端產品質量的溯源,裝配工藝建模方面的分析和資源的排查和整個物流系統如何做優化。

      數據應該從制造業中來 也應該回到制造業中去

      再往下看,真的要讓企業各種人員和外部能夠運用起來,就要開發算法與組件,還有面向各種業務人員,也就是windows化和圖形化比較方便,一線的操作人員都要應用起來。

      現在企業內部有很多數據,大家都知道數據是寶貝,但沒有真正利用起來。我們調查過真正的商業數據不到4%,所以怎么統一、規范,讓它易用,工業機理如何沉淀下來變成知識,不要變成人盯著數據,現在的數據用量很小。如何讓機器變成智能,讓機器智盯數據。所以,做流程、做看板可能是一個途徑。

      工業典型案例

      我舉幾個案例:

      案例1:質量管理。

      大家都知道浙江春風動力股份有限公司的摩托車生產,摩托車是傳統的制造,春風是后起之秀,每年銷售額50億左右。

      這家企業非常有競爭力,這是一個國賓車隊的摩托,這個車輛和傳統車輛相比有100多項評比,它要求高、質量好,而且政府采購價格不高,企業還不想虧損。工信部審核,春風動力做自動化,同時降低一線員工的操作工人。

      不到一年下來,30個機加工車間,現在操作工只有4-5個人左右,大幅度減人,這就有了效益。

      他們嘗到了甜頭,競爭力很大,小批量也可以成本優化,所以它做摩托車、沙灘車,并且開始出口。他們做了二期,現在還要做。摩托車行業主要的還是發動機,發動機最頭疼的還是裝配線。

      如果用比較簡單的方法改造裝配線,具體就定位到成本低,不要大幅度改造裝配線,能夠快速響應,用數字化的手段改造。

      最后找一個答案做工位,就像擰螺絲釘,擰過或者擰不到位都有問題,后期改造成本大而且影響品牌。

      現在如何把裝配軌跡跟蹤和軌跡標注變成數據,通過數據及時報警、預警,馬上改正,可以實時的做?,F在就是一個一個工位做下去,做二期,再把算法更新。

      案例2:溴冷機智能遠程運維。

      這邊就是一個案例。去年八月份專家判斷27日有問題,數據報警預計是27日11點,大概相差3個小時,但發生故障是2天以后,就是29日發生故障。

      所以,它有一天多的時間提前維修,很容易排除故障。設備故障率降低了30%,這就是根據機器提前預測故障,提前預警。

      案例3:盾構機掘進輔助駕駛。

      我們07年做了第一臺樣機,等了1年用起來,最近11年我們已經占領了很大的市場。

      我們的技術已經和國外并跑,但還沒有形成引領,現在中國盾構掘進機占了全球用量的55%-60%,出口到21個國家,現在很多隧道施工都有問題,現在從2米到16米的隧道,真正施工下只有12個人,有6個做管片拼裝,還有1個司機,司機是關鍵崗,現在發展太快,司機培訓不夠。

      地面支持經常是半夜出現問題,該出的都出事了。如何智能做事,我們和兩家央企中國龍頭企業和世界龍頭企業做這個事。

      舉個例子就是設備的分類,掘進延時的分類,現在巖土力學可以分,現在是根據圖像對巖土進行分類。

      分類以后關鍵是控制巖土分類的大小,下來石塊的大小,太大了會把傳輸系統的皮帶損壞,太小了的話,主要的能量都用于碎石了。

      現在煤礦業也有這個問題,下面采礦,皮帶機出來也是石頭大小,目前是靠工人拿根棍子,大了把它捅下來,是不舒服的工作崗位。

      現在可以通過圖像、數據和工具進行篩選下來。這個案例就是以數據圖像判斷石塊下來的尺寸,可以提高掘進機的效率和設備的壽命。

      案例4:智能汽車渦輪增壓器葉輪瑕疵識別。

      葉輪是很大的問題,不管是航空發動機還是汽車都是這樣的問題,現有的各種缺陷是靠質檢員巡檢,質檢員永遠存在漏檢的問題,所以能不能把這些制造的缺陷、產品的缺陷建立數據庫,建立數據庫以后,對葉片層有哪些劃傷,把計算和算法收集起來,進行提煉,知道哪些要召回、哪些要做改進。

      大幅度降低了對人工的依賴,而且降低了成本。準確性可以逐漸迭代上升,現在可以做到90%。

      案例5:生產監控分析。

      還有一個案例就是在蕭山做兆豐機電。兆豐也是全省智能制造示范點,最早機器換人加了很多機械手,逐漸降低人工,現在數據大量起來,數據如何整合,他們提出了緊迫的需求就是建工廠的大腦,要把現在的生產數據、設計的數據、用戶數據全部打通,運作起來。

      這個行業最主要是生產節拍的問題,軸承材料中磨削占了很大的時間,以前都是靠人員來做,實際上它有很多可以改善的地方。只有把東西打開才知道哪些方面可以提高。

      因為這個行業的生產節拍做到20秒就很好了,再降低1秒都非常困難,現在用數據來做。

      原來是18秒,現在可以做到15秒,交貨期縮短7天,質量上升,能耗降低,所以很明顯勞動生產率現在是行業最高,人均從85萬到280萬,“身體”好了就開始搶其他的地盤,原來主要是汽車,現在到其他市場,也開始做航空軸承。所以智能制造的改變,這家企業嘗到了甜頭。

      商飛大飛機制造工廠大腦

      所以它提出要求,航空業的數據很多,也在不停的做數據優化,但很難全局優化,都是局部。

      現在有機加車間和部裝車間,現在新加的是復合材料車間,就是一群人在查缺陷。前面說的虎符、算盤能不能打通考慮,也就是做虛擬工廠?,F在速度要快,5G進去,所以現在去上飛參觀全部是華為的5G。

      舉一個例子說明挑戰有多大,飛機的裝配有6000個節點,它叫OA,每個節點設計30道工序,每個工序一出問題引起連鎖反應,所以要搞清楚這之間的關系,原來做計劃就是工藝員,有幾十上百個工藝員,做很多計劃。

      但執行的準確率很低,做到極限是60%,現在數據打通以后,才不到3個月,開始共享來做,提高很明顯。就是把這些關系找出來,把資源的約束、人力、算法打通聯系在一起,可以隨時調用數據,可以看到任何場景。計劃的執行率提高了20%,相信隨著AR件的量產以及C919上來,執行率和準確率還可以大幅度提高。

      也就是說,和前面做發動機葉片一樣,前期要定義好,前期的工作比較慢,一旦做起來上線就可以做很多事。

      掃描過去,拍張照片,500萬的像素,一秒鐘十幾幀,圖像數據需要700-800M,華為主要是下載,現在大量的車間需要上傳數據,而且上傳量非常大,根本上傳不了,帶來的問題就是如何上傳數據。

      而且他們號稱5G要做到每秒鐘1個G,現在我們在做數據的處理、關鍵數據的上傳,還有一個就是華為在做,所以也派人在做。因為孔隙、位置、面積還是挺復雜的,而且要做成機器的智能,讓機器盯著缺陷,有很多好處。

      現在賀董事長說商飛能不能做,如果商飛的數據要上來更困難了,現在都說飛機的整體化設計,現在飛機的設計和應用、維修、培訓數據都非常大,目前飛機的方案正在做,還沒有實施,不知道商飛之后智能制造打通會帶來哪些變化。

      這個方案的意義就是排程優化,提升裝配效率,最終實現智能制造提升。

      基于工業互聯網2.0時代

      現在協同制造是產業鏈,從用戶到供應鏈的管理,個性化的設計需要數據的互聯互通,跨界融合。場內、區域網,以后還有行業網,國內外、境內外都需要打通。

      所以,從工廠的角度協同制造、采購、物流、產學研人才、內部企業端到公共云,現在企業也在討論公有云、私有云,還是干脆不用云,用邊緣計算,這需要企業真正實施頂層設計。

      商業數據、工業數據需要打通,需要一個平臺,把生產的計劃,訂單的信息、市場的變化都變成數據、變成算法,融合在一起,包括企業內外生產以及能源的調度,都要貫穿工業的全部過程。

      我們認為企業實施智能制造、工業互聯網應該有四個階段?,F在工信部在推“百萬企業上云”,浙江推“十萬企業上云”,這只是第一個階段,第二階段做中間件和中臺戰略,第三階段是實現數據治理,最后實現全局智能,也就是工廠大腦、協同制造、智能制造,設備的制造靠機器的智能。

      現階段在工業化發達國家,需要人才,需要產業布局、人才培養和組織模式,傳統的工業部門有話語權和決定權,數據不輕易給人,給了以后也要做得好,所以真的要做企業的頂層設計,需要真正的整體戰略。

      我們認為,頂層設計很重要,剛才和張院士還在說有了頂層設計就是快速迭代,現在中國人口紅利,工程師紅利還沒有出現,在外部華為等IT算法的人,大家如何配合起來做人腦和機器混合腦的問題,就是在數字經濟下,倒逼制造再升級會有問題。原來企業是大魚吃小魚,以后就是快魚吃慢魚。

      總體來看數據不應該取代人,也不是機器取代人,應該是機器智能解放人的智慧,不要人盯著數據,所以數據應該從制造業中來,也應該回到制造業中去。

      原文標題:工程院院士楊華勇:數據應從制造業中來,也應該回到制造業中去

      版權聲明:本文內容由網絡用戶投稿,版權歸原作者所有,本站不擁有其著作權,亦不承擔相應法律責任。如果您發現本站中有涉嫌抄襲或描述失實的內容,請聯系我們jiasou666@gmail.com 處理,核實后本網站將在24小時內刪除侵權內容。

      版權聲明:本文內容由網絡用戶投稿,版權歸原作者所有,本站不擁有其著作權,亦不承擔相應法律責任。如果您發現本站中有涉嫌抄襲或描述失實的內容,請聯系我們jiasou666@gmail.com 處理,核實后本網站將在24小時內刪除侵權內容。

      上一篇:內容的顯示與隱藏怎么操作?(怎么把隱藏的文件顯示出來)
      下一篇:電腦excel打不開怎么回事(電腦excel為什么打不開)
      相關文章
      亚洲AV无码乱码在线观看牲色| 亚洲资源在线视频| 亚洲日本视频在线观看| 亚洲国产精品嫩草影院在线观看| 亚洲JIZZJIZZ妇女| 亚洲图片校园春色| 亚洲日韩中文字幕天堂不卡| 色拍自拍亚洲综合图区| 亚洲视频在线观看网址| 亚洲最新在线视频| 亚洲黄色中文字幕| 亚洲国产成人va在线观看网址| 蜜芽亚洲av无码精品色午夜| 久久亚洲中文字幕精品有坂深雪 | 亚洲综合一区二区精品导航| 亚洲另类激情综合偷自拍| 久久国产亚洲高清观看| 亚洲蜜芽在线精品一区| 亚洲伊人久久大香线蕉啊| 国产成人精品日本亚洲18图| 亚洲色大成网站www| MM1313亚洲精品无码久久| avtt亚洲天堂| 在线播放亚洲第一字幕| 亚洲国产精品无码久久一区二区 | 亚洲国产成人手机在线观看| 国产精品亚洲а∨无码播放不卡 | 国产亚洲精品AA片在线观看不加载| 国产亚洲成人久久| 亚洲国产精品久久久久婷婷软件 | 亚洲精品午夜国产VA久久成人| 亚洲VA中文字幕无码一二三区| 亚洲欧洲日产国码久在线观看| 久久亚洲AV成人无码软件| 亚洲乱码一二三四区国产| 亚洲精品女同中文字幕| 亚洲国产精品尤物yw在线| 亚洲人成在线播放网站| 久久久久亚洲AV无码观看| 亚洲最大无码中文字幕| 国产精品日本亚洲777|