亞寵展、全球寵物產業風向標——亞洲寵物展覽會深度解析
2878
2022-11-23
本篇文章給大家談談在線excel數據分析,以及數據分析 Excel對應的知識點,希望對各位有所幫助,不要忘了收藏本站喔。 今天給各位分享在線excel數據分析的知識,其中也會對數據分析 Excel進行解釋,如果能碰巧解決你現在面臨的問題,別忘了關注本站,現在開始吧!
本文目錄一覽:
1、新建并打開excel表格,
2、首先添加數據分析插件,點擊左上角按鈕,出現菜單頁面,選中右下角“EXCEL選項”按鈕,點擊,
3、然后點擊“加載項”選項,選中“分析工具庫”,點擊下方"轉到"按鈕,
4、然后出現excel加載宏界面,在”分析工具庫“前方框內打勾,點擊確定。
5、經過上一步已經成功添加”數據分析插件“,在”數據“-”數據分析“下可以找到,
6、然后點擊”數據分析“,可以找到相關的分析方法,如 回歸分析,方差分析,相關分析等。
在日常辦公以及數據處理中,經常要把一些有規律的數據處理成圖文,從而看起來比較直觀。下面讓我為你帶來excel表格數據分析的 方法 。
excel表格數據分析步驟如下:
選擇成對的數據列,將它們使用“X、Y散點圖”制成散點圖。
在數據點上單擊右鍵,選擇“添加趨勢線”-“線性”,并在選項標簽中要求給出公式和相關系數等,可以得到擬合的直線。
由圖中可知,擬合的直線是y=15620x+6606.1,R2的值為0.9994。
因為R2 0.99,所以這是一個線性特征非常明顯的實驗模型,即說明擬合直線能夠以大于99.99%地解釋、涵蓋了實測數據,具有很好的一般性,可以作為標準工作曲線用于其他未知濃度溶液的測量。
為了進一步使用更多的指標來描述這一個模型,我們使用數據分析中的“回歸”工具來詳細分析這組數據。
在選項卡中顯然詳細多了,注意選擇X、Y對應的數據列?!俺禐榱恪本褪侵该髟撃P褪菄栏竦恼壤P停纠_實是這樣,因為在濃度為零時相應峰面積肯定為零。先前得出的回歸方程雖然擬合程度相當高,但是在x=0時,仍然有對應的數值,這顯然是一個可笑的結論。所以我們選擇“常數為零”。
“回歸”工具為我們提供了三張圖,分別是殘差圖、線性擬合圖和正態概率圖。重點來看殘差圖和線性擬合圖。
在線性擬合圖中可以看到,不但有根據要求生成的數據點,而且還有經過擬和處理的預測數據點,擬合直線的參數會在數據表格中詳細顯示。本實例旨在提供更多信息以起到拋磚引玉的作用,由于涉及到過多的專業術語,請各位讀者根據實際,在具體使用中另行參考各項參數,此不再對更多細節作進一步解釋。
殘差圖是有關于世紀之與預測值之間差距的圖表,如果殘差圖中的散點在中州上下兩側零亂分布,那么擬合直線就是合理的,否則就需要重新處理。
更多的信息在生成的表格中,詳細的參數項目完全可以滿足回歸分析的各項要求。下圖提供的是擬合直線的得回歸分析中方差、標準差等各項信息。
關于excel表格數據分析的相關 文章 推薦:
1. 如何利用excel進行數據分析的教程
2. 如何用excel進行數據分析的教程
3. excel的數據分析功能在哪里
前言
最近松懈了,花了很多時間在玩游戲看視頻上,把學習計劃耽擱了,總說要自律,但光說不做是沒用的,最主要是自控能力太差了,得承認自己和大多數人一樣,愛玩、不愿意邁出舒適區,“知行合一”,只四個字,大道至簡,卻超過99%的人都做不到。在前進的路上,希望自己能克服惰性,提升自控力,按計劃耐心學習并踐行。
1、數據分析步驟:
提出問題→理解數據→數據清洗→構建模型→數據可視化
2、實踐案例:
利用一份招聘網站的數據作為實戰案例。
第一步提出問題:
1)在哪些城市找到數據分師工作的機會比較大?
2)數據分師的薪水如何?
3)根據工作經驗的不同,薪酬是怎樣變化的?
第二步理解數據:
初始數據有6875條,14項內容。
設置表格列寬(步驟如下圖),顯示全部內容,方便后續操作,最后保存。
第三步清洗數據:
這一步需要花費的時間占大部分,把數據處理成自己想要的樣子。
1、選擇子集:選擇公司全名和公司ID兩列并隱藏(取消隱藏方法:全選表格→開始→格式→隱藏和取消隱藏→取消隱藏列)
2、列名重命名:雙擊列名可以修改成自己想要的列名。
3、刪除重復值:選擇職位ID將其重復值刪除(步驟如下圖)
4、缺失值處理:選擇職位ID列計數5032,選擇城市列計數5030,城市列缺失兩個數據。
查找并定位城市列的缺失值(步驟如下圖),缺失值填上海。
缺失值處理的4種方法,根據情況靈活使用:
1)通過人工手動補全;
2)刪除缺失的數據;
3)用平均值代替缺失值;
4)用統計模型計算出的值去代替缺失值。
5、一致化處理:對“公司所屬領域”進行一致化處理(步驟如下圖)
將原來的“公司所屬領域”列隱藏,并將復制的列進行分列:
6、數據排序:
7、異常值處理:
第四步構建模型
第五步數據可視化
通過上面的分析,我們可以得到的以下分析結論有:
1)數據分析這一崗位,有大量的工作機會集中在北上廣深以及新一線城市,如果你將來去這些城市找工作,可以提高你成功的條件概率。
2)從待遇上看,數據分析師留在深圳發展是個不錯的選擇,其次是北京、上海。
3)數據分析是個年輕的職業方向,大量的工作經驗需求集中在1-3年。
對于數據分析師來說,5年似乎是個瓶頸期,如果在5年之內沒有提升自己的能力,大概以后的競爭壓力會比較大。
4)隨著經驗的提升,數據分析師的薪酬也在不斷提高,10年以上工作經驗的人,能獲得相當豐厚的薪酬。
3、劃重點:
1)分列功能會覆蓋掉右列單元格,所以我們記得先要復制這一列到最后一個空白列的地方,再進行分列操作。
2)上面圖片中的函數:IF(COUNT(FIND({"數據運營","數據分析","分析師"},L2)),"是","否")。
3)Ctrl+Eneter快捷鍵,在不連續的單元格中同時輸入同一個數據或公式時很好用。
4)精確查找和近似查找(模糊查找)的區別
(1)精確查找是指從第一行開始往最后一行逐個查找。一找到匹配項就停止查詢,所以返回找到的第一個值。
(2)當你要近似查找的時候,它就會苦逼地查遍所有的數據,返回的是最后一個匹配到的值。
5)在使用vlookup函數時,在很多情況下使用的是精確匹配,而在進行分組時需要用模糊匹配,所以這里要輸入“1”來進行模糊匹配。
6)Excel設置了快捷鍵F4幫助用戶迅速切換相對引用、絕對引用和混合引用,步驟如下:
(1)選定包含該公式的單元格;
(2)在編輯欄中選擇要更改的公式內容,并按 F4 鍵;
(3)以引用單元格A1為例,每次按 F4 鍵時,Excel會依次在以下組合間切換:
按一次F4是絕對引用
按兩次、三次F4是混合引用
按四次F4是相對引用
7)使用這個函數過程中,如果出現錯誤標識“#N/A”,一般是3個原因導致:
(1)第2個參數:查找范圍里第一列的值必須是要查找的值。
比如這個案例里第2個參數選定的的范圍里第一列是姓名,是要查找值的列。
(2)數據存在空格,此時可以嵌套使用TRIM函數將空格批量刪除。
(3)數據類型或格式不一致,此時將數據類型或格式轉為一致即可。
Excel是日常工作中最常用的工具,如果不考慮性能和數據量的話,可以應付絕大部分的分析工作。數據分析的最終目的是解決我們生活和工作中遇到的問題,明確的問題為數據分析提供了目標和方向。
Excel數據分析步驟分為:明確問題-理解數據-清洗數據-數據分析或構建模型-數據可視化。
一、明確問題
以上篇文章中提到的淘寶和天貓嬰兒用品數據為數據集來進行數據分析。
1、在一級分類商品中,哪個商品銷量最好,在此分類下,哪個子分類最受歡迎?
2、不同季度對用戶購買行為有什么影響?
2、不同年齡對用戶購買行為有什么影響?
3、不同性別對用戶購買行為有什么影響?
二、理解數據
參考 沐沐:描述統計分析 理解數據集部分
三、數據清洗
數據清洗步驟為:選擇子集-列名重命名-刪除重復值-缺失值處理-一致化處理-數據排序-異常值處理。
1、選擇子集
有時候原始數據量過大,有時候并不需要全部字段,我們可以將不需要用到的字段進行隱藏,為了保證數據的完整性,盡量不要刪除數據。從問題中我們可以發現購買商品表中的商品屬性對于我們分析數據沒什么幫助,可以將其隱藏(選中商品屬性列-右擊-選擇隱藏)。
2、列名重命名
我們可以將原始數據集的英文字段改成中文字段,方便閱讀和理解,雙擊列名直接修改即可。
3、刪除重復值
從購買商品表和嬰兒信息表示中可知,如果全部字段重復,我們才認為數據是有重復的,從操作來看,是沒有重復值的。
4、缺失值處理
可以看總共有多少行數據,然后鼠標選中列來看缺少多少數值。如果有缺失值,我們可以用定位找到缺失值(選中列-F5-定位條件-空值)。未找到缺失值。
5、一致化處理
對數據列的數據格式進行統一處理。數據中的購買時間列和出生日期列為常規格式,我們需要轉換為日期類型(選中列-右擊-設置單元格格式-日期),然后再選中列-分列-下一步-下一步-列數據格式:日期:YMD-完成。
6、數據排序
我們通過對購買次數列進行降序排序,發現用戶‘2288344467’在2014年11月13日購買了10000份的‘50018831’二級分類、‘50014815’一級分類商品。
7、異常值處理
通過數據透視表沒有每列數據中的異常值。
至此,我們已經得到分析問題的數據了,下一步,利用Excel中的數據透視、函數和分析工具來進行數據分析來解決我們的業務問題了。
1、在一級分類商品中,哪個商品銷量最好,在此分類下,哪個子分類最受歡迎?
將商品一級分類放在行標簽,值為購買數量的求和項,得出最受歡迎的一級商品為28,購買數量為28545。
在此分類下,即在一級分類28商品下,最受歡迎的是哪類二級商品?
2、季度對用戶購買行為有什么影響?即看每個季度銷量怎么樣?
從數據透視結果來看,我們發現,12-14年的第四季度在該年的銷售量都是最高的。
3、不同年齡對用戶購買行為有什么影響?
在分析這個問題之前,我們需要將一級分類商品和二級分類商品用Vlookup函數V到嬰兒信息表中,然后計算出嬰兒的年齡。
根據計算出的數據透視出來各年齡段的購買量為:從透視表中我們可以看出4歲以前的嬰兒為主要用戶群體。
從嬰兒不同年齡段購買二級商品數量來看,各年齡段最受用戶歡迎的二級商品如下圖所示:
4、不同性別對用戶購買行為有什么影響?
我們可以看出男嬰兒和女嬰兒的人數相差小,但是女嬰兒的購買數量將近是男嬰兒的兩倍。
最受男女嬰兒歡迎的二級分類商品的TOP5
此外,我們還可以看出最受男女嬰兒歡迎的二級分類商品TOP5。
在 Excel 中錄入好數據以后通常需要對數據進行分析,這個時候就要利用到數據分析這塊功能了。下面是我帶來的關于excel2013快速數據分析的教程的內容,歡迎閱讀!
excel2013快速數據分析的教程:
快速數據分析步驟1:啟動 Excel2013 ,例如有如下圖所示的表格。
快速數據分析步驟2:選中一組數據,這時候會出現“快速分析”的按鈕。
當然也可以先選中數據然后右擊選擇“快速分析”。
快速數據分析步驟3:單擊“快速分析”按鈕會出現如下圖所示的選項。有五種輔助快速分析的工具,分別為“格式”、“圖表”、“匯總”、“表”和“迷你圖”。
快速數據分析步驟4:數據條:如果選擇“格式”-“數據條”,效果如下圖所示。
快速數據分析步驟5:色階:如果選擇“格式”-“色階”,效果如下圖所示。
快速數據分析步驟6:圖標集:如果選擇“格式”-“圖標集”,效果如下圖所示。
快速數據分析步驟7:大于:如果選擇“格式”-“大于”,會打開“大于”對話框,設置大于的值和格式,然后單擊“確定”即可看到效果。
快速數據分析步驟8:前10%:如果選擇“格式”-“前10%”,效果如下圖所示。
快速數據分析步驟9:圖表:選中相應的列,然后快速分析,選中“圖表”選項卡,選擇你需要的圖表即可。簇狀柱形圖如下圖所示。
快速數據分析步驟10:匯總:這里可以求和、求平均值、計數、匯總百分比、匯總等。例如選中數據后單擊“匯總”—“求和”,則求和項會在選中數據下方顯示。
做excel數據分析的方法如下:
1、打開Excel,打開左上角文件的標簽欄。
2、進入到底部的“選項”。
3、接下來找到“加載項”,然后在加載項中找到“分析工具庫”。
4、然后點擊底部的“轉到”。
5、在這個界面勾選“分析工具庫”然后確定。
6、接著就可以在頂部工具欄的“數據”一欄下找到“數據分析”選項了。
7、單擊打開,這里有很多簡單的數據分析功能,單擊需要使用的功能確定,然后按照要求使用即可。
關于excel數據分析可以到CDA認證中心咨詢一下。全球CDA持證者秉承著先進商業數據分析的新理念,遵循著《CDA職業道德和行為準則》新規范,發揮著自身數據專業能力,推動科技創新進步,助力經濟持續發展。 關于在線excel數據分析和數據分析 Excel的介紹到此就結束了,不知道你從中找到你需要的信息了嗎 ?如果你還想了解更多這方面的信息,記得收藏關注本站。 在線excel數據分析的介紹就聊到這里吧,感謝你花時間閱讀本站內容,更多關于數據分析 Excel、在線excel數據分析的信息別忘了在本站進行查找喔。
版權聲明:本文內容由網絡用戶投稿,版權歸原作者所有,本站不擁有其著作權,亦不承擔相應法律責任。如果您發現本站中有涉嫌抄襲或描述失實的內容,請聯系我們jiasou666@gmail.com 處理,核實后本網站將在24小時內刪除侵權內容。