ELK 設(shè)置定時清理腳本清理索引
888
2025-04-01
文章目錄
概述
官網(wǎng)
近似匹配
例子
match query
match phrase query
term position
match_phrase的基本原理
概述
繼續(xù)跟中華石杉老師學(xué)習(xí)ES,第17篇
課程地址: https://www.roncoo.com/view/55
官網(wǎng)
https://www.elastic.co/guide/en/elasticsearch/reference/current/full-text-queries.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-match-query-phrase.html
近似匹配
假設(shè)content字段中有2個語句
java is my favourite programming language, and I also think spark is a very good big data system. java spark are very related, because scala is spark's programming language and scala is also based on jvm like java.
1
2
3
4
使用match query , 搜索java spark ,DSL 大致如下
{ "match": { "content": "java spark" } }
1
2
3
4
5
content 被拆分為兩個單詞 java 和 spark去匹配,所以如上兩個doc都能被查詢出來。
match query,只能搜索到包含java和spark的document,但是不知道java和spark是不是離的很近. 包含java或包含spark,或包含java和spark的doc,都會被查詢出來。我們其實并不知道哪個doc,java和spark距離的比較近。
如果我們希望搜索java spark,中間不能插入任何其他的字符, 這個時候match就無能為力了 。
再比如 , 如果我們要盡量讓java和spark離的很近的document優(yōu)先返回,要給它一個更高的relevance score,這就涉及到了proximity match,近似匹配.
例子
假設(shè)要實現(xiàn)兩個需求:
java spark,就靠在一起,中間不能插入任何其他字符,就要搜索出來這種doc
java spark,但是要求,java和spark兩個單詞靠的越近,doc的分?jǐn)?shù)越高,排名越靠前
要實現(xiàn)上述兩個需求,用match做全文檢索,是搞不定的,必須得用proximity match,近似匹配
phrase match:短語匹配
proximity match:近似匹配
這里我們要學(xué)習(xí)的是phrase match,就是僅僅搜索出java和spark靠在一起的那些doc,比如有個doc,是java use’d spark,不行。必須是比如java spark are very good friends,是可以搜索出來的。
match phrase query,就是要去將多個term作為一個短語,一起去搜索,只有包含這個短語的doc才會作為結(jié)果返回。
不像是match query,java spark,java的doc也會返回,spark的doc也會返回。
match query
為了做比對,我們先看下match query的查詢結(jié)果
GET /forum/article/_search { "query": { "match": { "content": "java spark" } } }
1
2
3
4
5
6
7
8
9
10
返回結(jié)果
{ "took": 40, "timed_out": false, "_shards": { "total": 1, "successful": 1, "skipped": 0, "failed": 0 }, "hits": { "total": 2, "max_score": 1.8166281, "hits": [ { "_index": "forum", "_type": "article", "_id": "5", "_score": 1.8166281, "_source": { "articleID": "DHJK-B-1395-#Ky5", "userID": 3, "hidden": false, "postDate": "2019-05-01", "tag": [ "elasticsearch" ], "tag_cnt": 1, "view_cnt": 10, "title": "this is spark blog", "content": "spark is best big data solution based on scala ,an programming language similar to java spark", "sub_title": "haha, hello world", "author_first_name": "Tonny", "author_last_name": "Peter Smith", "new_author_last_name": "Peter Smith", "new_author_first_name": "Tonny" } }, { "_index": "forum", "_type": "article", "_id": "2", "_score": 0.7721133, "_source": { "articleID": "KDKE-B-9947-#kL5", "userID": 1, "hidden": false, "postDate": "2017-01-02", "tag": [ "java" ], "tag_cnt": 1, "view_cnt": 50, "title": "this is java blog", "content": "i think java is the best programming language", "sub_title": "learned a lot of course", "author_first_name": "Smith", "author_last_name": "Williams", "new_author_last_name": "Williams", "new_author_first_name": "Smith" } } ] } }
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
可以看到單單包含java的doc也返回了,不是我們想要的結(jié)果 。
match phrase query
為了演示match phrase query的功能,我們先調(diào)整一下測試數(shù)據(jù)
POST /forum/article/5/_update { "doc": { "content":"spark is best big data solution based on scala ,an programming language similar to java spark" } }
1
2
3
4
5
6
7
8
將id=5的doc的content設(shè)置為恰巧包含java spark這個短語 。
GET /forum/article/_search { "query": { "match_phrase": { "content": "java spark" } } }
1
2
3
4
5
6
7
8
返回結(jié)果
{ "took": 47, "timed_out": false, "_shards": { "total": 1, "successful": 1, "skipped": 0, "failed": 0 }, "hits": { "total": 1, "max_score": 1.4302213, "hits": [ { "_index": "forum", "_type": "article", "_id": "5", "_score": 1.4302213, "_source": { "articleID": "DHJK-B-1395-#Ky5", "userID": 3, "hidden": false, "postDate": "2019-05-01", "tag": [ "elasticsearch" ], "tag_cnt": 1, "view_cnt": 10, "title": "this is spark blog", "content": "spark is best big data solution based on scala ,an programming language similar to java spark", "sub_title": "haha, hello world", "author_first_name": "Tonny", "author_last_name": "Peter Smith", "new_author_last_name": "Peter Smith", "new_author_first_name": "Tonny" } } ] } }
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
從結(jié)果中可以看到只有包含java spark這個短語的doc才返回,只包含java的doc不會返回
term position
分詞后,每個單詞就是一個term
分詞后 , es還記錄了 每個field的位置。
舉個例子 兩個doc 如下:
hello world, java spark doc1
hi, spark java doc2
建立倒排索引后
可以通過如下API來看下
GET _analyze { "text": "hello world, java spark", "analyzer": "standard" }
1
2
3
4
5
返回:
{ "tokens": [ { "token": "hello", "start_offset": 0, "end_offset": 5, "type": "
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
通過position 可以看到位置信息 。
match_phrase的基本原理
理解下索引中的position,match_phrase
兩個doc 如下
hello world, java spark doc1 hi, spark java doc2
1
2
java spark , 采用match phrase來查詢
首先 java spark 被拆成 java和spark ,分別取索引中查找
java 出現(xiàn)在 doc1(2) doc2(2) spark 出現(xiàn)在 doc1(3) doc2(1)
1
2
要找到每個term都在的一個共有的那些doc,就是要求一個doc,必須包含每個term,才能拿出來繼續(xù)計算
doc1 --> java和spark --> spark position恰巧比java大1 --> java的position是2,spark的position是3,恰好滿足條件
doc1符合條件
doc2 --> java和spark --> java position是2,spark position是1,spark position比java position小1,而不是大1 --> 光是position就不滿足,那么doc2不匹配 .
Elasticsearch Java 實時流計算服務(wù) CS
版權(quán)聲明:本文內(nèi)容由網(wǎng)絡(luò)用戶投稿,版權(quán)歸原作者所有,本站不擁有其著作權(quán),亦不承擔(dān)相應(yīng)法律責(zé)任。如果您發(fā)現(xiàn)本站中有涉嫌抄襲或描述失實的內(nèi)容,請聯(lián)系我們jiasou666@gmail.com 處理,核實后本網(wǎng)站將在24小時內(nèi)刪除侵權(quán)內(nèi)容。
版權(quán)聲明:本文內(nèi)容由網(wǎng)絡(luò)用戶投稿,版權(quán)歸原作者所有,本站不擁有其著作權(quán),亦不承擔(dān)相應(yīng)法律責(zé)任。如果您發(fā)現(xiàn)本站中有涉嫌抄襲或描述失實的內(nèi)容,請聯(lián)系我們jiasou666@gmail.com 處理,核實后本網(wǎng)站將在24小時內(nèi)刪除侵權(quán)內(nèi)容。